TITLE

Frank E Harrell Jr Division of Biostatistics and Epidemiology

Department of Health Evaluation Sciences University of Virginia School of Medicine Box 800717 Charlottesville VA 22908 USA

fharrell@virginia.edu hesweb1.med.virginia.edu/biostat

> MEETING DATE

Outline

1. Introduction

 motivating examples of linear and non-linear mixed-effects models

•
$$x^2 - \sum_{i=1}^n \chi^2$$

- a sample of S-PLUS commands for fitting and analyzing mixed-effects models.
- 2. Grouped data
 - repeated measures, longitudinal data, growth curve data
 - multiply-nested data
 - Data structures, classes, and methods for grouped data in S-PLUS
 - Trellis displays for grouped data

- 3. Linear mixed-effects models
 - brief review of linear models
 - linear mixed-effects (LME) model
 - Multilevel LME models
 - the lme function in S-PLUS
- 4. Extending the basic LME model
 - modelling the random effects covariance structure
 - variance functions for modelling heteroscedasticity
 - correlation structures: serial, spatial
 - S-PLUS capabilities for extending and customizing the lme function
 - the gls function in S-PLUS

- 5. Nonlinear mixed-effects models
 - nonlinear regression model
 - starting estimates: self-starting models
 - nonlinear mixed-effects (NLME) models
 - the nlme function in S-PLUS
 - extending the basic NLME model
 - using covariates with nlme

Orthodont – orthodontic growth data

Distance (in millimeters) between the pituitary and the pterygomaxillary fissure measured every two years for 27 children (16 males, 11 females) from age 8 until age 14. Reported in [1]

	distance	age	Subject	Sex
1	26.0	8	M01	Male
2	25.0	10	M01	Male
3	29.0	12	M01	Male
4	31.0	14	M01	Male
5	21.5	8	M02	Male
6	22.5	10	M02	Male
•••	•			
104	19.5	14	F10	Female
105	24.5	8	F11	Female
106	25.0	10	F11	Female
107	28.0	12	F11	Female
108	28.0	14	F11	Female

- balanced data
- linear growth with time

Figure 1: This is a test. This is only a test.

• similar patterns across individuals, but with different intercepts and slopes [?]

References

 [1] R. F. Potthoff and S. Roy. A generalized multivariate analysis of variance model useful especially for growth curve problems. *Biometrika*, pages 313–326, 1964.

Abstract

.