Homework 7

2. $\operatorname{Rng}(R) = \mathbb{R}$

Problem 1. Let $S = \{(x, y) \in \mathbb{R} \times \mathbb{R} : y = \sqrt{4 - 2x}\}$ prove that:

- 1. $0 \in \operatorname{Rng}(S)$ \square Proof. \square 2. $3 \notin \operatorname{Dom}(S)$ \square Proof. \square Problem 2. Let $R = \{(x, y) \in \mathbb{R} \times \mathbb{R} : x = |y|\}$, prove that:1. $\operatorname{Dom}(R) = [0, \infty)$ Proof.
 - Proof. \Box

Problem 3. Prove that $Dom(S \circ R) \subseteq Dom(R)$

Proof.

Problem 4. One of these statements is true, the other is false. Prove the statement that is true and give a counter example to show the other statement is false:

1. $\operatorname{Rng}(S) \subseteq \operatorname{Rng}(S \circ R)$	
Proof.	
2. $\operatorname{Rng}(S \circ R) \subseteq \operatorname{Rng}(S)$	
Proof.	
Problem 5. <i>Prove</i> $(R^{-1})^{-1} = R$	

Proof.