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ABSTRACT

In this paper, we do exactly what the title implies: prove the Čebotarev Density Theorem. This is an
extremely valuable theorem because it is a vast generalization of Dirichlet’s Theorem on primes in an
arithmetic progression, which states that for any a, n ∈ Z+ relatively prime, there are infinitely many
primes that are ≡ a (mod n). Our theorem goes even further to the case of other number fields; we
will show that the prime ideals in an imaginary quadratic field K are virtually equidistributed among
the conjugacy classes of Artin symbols in the Galois group of a Galois extension L over K. Note that
L need not be abelian over K.

We start by introducing the L-functions. This will familiarize us with the most basic definitions as
well as important functions. Then, we talk about convergence of L-functions, which will be especially
important in later sections.

Next, we briefly visit some character theory. Specifically, the study of Dirichlet characters will help
us prove important statements regarding partial zeta functions that will aid us in our journey to the
Density Theorem. We then return to our study of L-functions and incorporate some of the theory
that we have built up to this point. In particular, we derive an important theorem regarding where an
L-function is analytic.

At this point, we introduce the notion of density. Starting with polar density, we explore various
density-related properties and go on to prove some powerful results, such as the Artin map being
surjective.

Then, we move on to Dirichlet density (and briefly introduce natural density). We prove that if polar
density exists, then so does Dirichlet density, and that the two are equal. This nicely connects these
two forms of density. We also explore some properties of Dirichlet density.

In the next section, we deepen our treatment of L-functions. We introduce several of the concepts
in class field theory that allow us to derive preliminary density results. Most importantly, we prove
that for a nontrivial Dirichlet character of the ray class group, the corresponding L-function does not
vanish at s = 1.

By generalizing our arguments in the study of L-functions, we establish the theory needed to prove
the main theorem in the case of an abelian extension L ⊃ K. At this point, we finally arrive at the
main theorem, and prove it in the case of non-abelian extensions by cleverly connecting it to the
abelian case.

Finally, we come to what is arguably the most important section: applications of the Čebotarev
Density Theorem. This theorem has prolific applications, ranging from the theory of binary quadratic
forms to the first main theorem of complex multiplication, although we just list a few. We then part
with some concluding remarks.
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1 A Review of L-Series

We start this paper by introducing basic notions needed to prove the main theorem. The first big topic is L-Series.
These sums carry valuable information pertaining to prime density, which we will see later on. We assume basic
knowledge of number fields and algebraic number theory. For a refresher of some of the assumed knowledge, check out
Bhandarkar [8].
Definition 1.1. A Dirichlet series is a sum of the form

f(n) =
∑
n≥1

a(n)

ns

where a(n) ∈ C and s = σ + it ∈ C. An Euler product belonging to a number field K is a product of the form

g(n) =
∏
p

1

(1− θ1(p)Np−s) · · · (1− θd(p)Np−s)

where θi(p) ∈ C, s ∈ C, and p runs over all but finitely many prime ideals of the ring of integers, OK . Also, N over
here denotes the norm function.

Let us look at two important examples of Dirichlet series.

1. The Riemann zeta function is
ζ(s) =

∑
n≥1

1

ns
=
∏
p

1

1− p−s

Notice that the sum is equal to the product because of unique factorization in Z.
2. More importantly, we will explore the Dedekind zeta function,

ζK(s) =
∑
a≥0

1

Nas
=
∏
p

1

1−Np−s

The sum is over the integral ideals of OK while the product is over the prime ideals of OK . Furthermore, the
sum above is equal to the product because of unique factorization of ideals into prime ideals in the ring of
integers OK (because it is a Dedekind domain).

Definition 1.2. Let ImK denote the set of fractional ideals in OK that are coprime to the modulus m. Define a Dirichlet
character χ to be a homomorphism

χ : ImK −→ C×

that is trivial over the principal class PK,1 of the ray class group Cm = ImK/PK,1. In other words, χ is a character over
the ray class group.

Notice that χ somewhat resembles the Artin map (which we will explicitly characterize in Theorem 6.4), though it is
not quite the same. Still, characters are especially useful when dealing with L-functions.
Definition 1.3. A Dirichlet L-series for a given character χ is

L(s, χ) =
∑

a⊂OK ,(a,m)=1

χ(a)

Nas
=

∏
(p,m)=1

1

1− χ(p)Np−s

Once again, we can turn the sum into the product because of unique factorization of ideals in OK .

2 Convergence of L-series

In this section, we list some analytic statements regarding the convergence of Dirichlet series. We omit the proof of
most theorems in this section; they generally reduce to extensive computation. Still, they make good exercises for the
reader.
Proposition 2.1. Let

f(n) =
∑
n≥1

a(n)

ns

2
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be a Dirichlet series and let S(x) =
∑
n≤x a(n), and suppose there exist constants a and b such that |S(x)| ≤ axb for

all large x. Then, f(s) converges uniformly for s in

D(b, δ, ε) = {<(s) ≥ b+ δ, arg(s− b) ≤ π/2− ε}
for all δ, ε ≥ 0, and it converges to an analytic function on the half plane <(s) > b. (Note that <(s) denotes the real
part of s.)
Lemma 2.2. The Riemann zeta function ζ(s) has a meromorphic continuation to the half plane <(s) > 0 with a simple
pole at s = 1.
Lemma 2.3. For s real and s > 1,

1

s− 1
≤ ζ(s) ≤ 1 +

1

s− 1
Hence, ζ(s) has a simple pole at s = 1 and

ζ(s) =
1

s− 1
+ function holomorphic near 1

Proof. This is left as an exercise to the reader. (Hint: Look at the graph of y = x−s and relate ζ(s) to the area under
the curve.) �

Armed with this fact, we can look at other interesting Dirichlet series.
Proposition 2.4. Let f(n) be a Dirichlet series for which there exists constantsC, a, and b < 1 such that |S(n)−an| ≤
Cxb. Then, f extends to a meromorphic function on <(s) > b with a simple pole at s = 1 with residue a.

Proof. For the Dirichlet series f(s)− aζ(s), |S(n)| ≤ Cxb, so by Proposition 2.1, this series converges for <(s) > b.
The result readily follows. �

Before we move on, we encounter one last lemma that will prove to be useful soon.
Lemma 2.5. Let u1, u2, · · · be a sequence of real numbers ≥ 2 for which

f(s) =

∞∏
j=1

1

1− u−sj

is uniformly convergent on each region D(1, δ, ε) (with δ, ε > 0). Then,

log f(s) ∼
∑ 1

usj

as s→ 1+ (i.e., from the right side of the plane).

Proof. This is a simple exercise in manipulating sums. (Hint: use the Maclaurin series for log(1− x) and then break
the double sum apart.) �

3 Characters and Partial Zeta Functions

Now, we introduce some basic character theory. In particular, knowing certain statements about characters - namely, the
orthogonality relations - will aid us in our study of L-functions.
Definition 3.1. A one-dimensional representation of a group G, i.e. χ : G −→ C× is a character of G. Note that this
map is a homomorphism.

Proposition 3.2. For a character χ of G, we have that
∑
a∈G χ(a) =

{
|G| if χ = χ0 (the trivial character)
0 otherwise

Proof. The first part is obvious. If we have a nontrivial character χ, then for some g ∈ G, χ(g) 6= 1. Then,

χ(g)
∑
a∈G

χ(a) =
∑
a∈G

χ(ga) =
∑
a∈G

χ(a),

meaning
∑
a∈G χ(a) = 0, as desired. �
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Proposition 3.3. Suppose the group G is abelian. Fix some a ∈ G. Then,∑
χ∈Ĝ

χ(a) =

{
|G| if a = 1

0 otherwise

Here, Ĝ = Hom(G,C×) is the character group of G.

Proof. Using the fact that G is noncanonically isomorphic to Ĝ, this proof becomes identical to that of the previous
proposition. �

Before we introduce some new tools, let us provide some motivation to our treatment of L-functions. Let K be a
number field and m be some modulus. Begin with the Dedekind zeta function, ζK(s). For some class t ∈ Cm (i.e., the
class group), define the partial zeta function to be

ζ(s, t) =
∑

a≥0,a∈t

1

Nas

Note that for every character χ of the class group,

ζK(s) =
∑
t∈Cm

ζ(s, t) and

L(s, χ) =
∑
t∈Cm

χ(t)ζ(s, t)

In other words, knowing about ζ(s, t) can tell us about the Dedekind zeta function as well as the corresponding
L-function.
Theorem 3.4. The partial zeta function ζ(s, t) is analytic for <(s) > 1− 1

[K:Q] except for a simple pole at s = 1. If
we let gm denote the residue at s = 1, then gm is independent of t.

Proof. We omit the proof of this theorem, mainly because it relies on the famous class number formula. It allows us to
determine exactly what gm is. �

Corollary 3.5. If χ is not the trivial character, the L-function L(s, χ) is analytic for <(s) > 1− 1
[K:Q] .

Proof. Near s = 1,

L(s, χ) =
∑
t∈Cm

χ(t)ζ(s, t) =

∑
t∈Cm

χ(t)gm

s− 1
+ holomorphic function

and Proposition 3.2 shows us that the numerator of the first term is 0. �

4 Polar Density

At last, we come across one type of density. For a set T of prime ideals of K, we define ζK,T (s) =
∏

p∈T
1

1−Np−s .

Definition 4.1. If some positive integral power ζK,T (s)n of ζK,T (s) extends to a meromorphic function on a neighbor-
hood of 1 having a pole of order m at 1, we say that T has polar density δ(T ) = m

n .
Proposition 4.2 (Properties of Polar Density). We have the following assertions:

1. The set of all prime ideals of K has polar density 1.

2. The polar density of every set is nonnegative.

3. If T is the disjoint union of T1 and T2, and two of the three polar densities exist, then so does the third, and we
have δ(T ) = δ(T1) + δ(T2).

4. If T ⊂ T ′, then δ(T ) ≤ δ(T ′).

5. A finite set has density zero.

4
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Proof.

1. We know that ζK,T (s) extends to a neighborhood of 1, where it has a simple pole. Thus m
n = 1, as desired.

2. Having a negative polar density means m < 0, i.e., ζK,T (s) is holomorphic in a neighborhood of s = 1 and
zero there. However, ζK,T (1) =

∏
p∈T

1
1−Np−1 > 0, meaning polar density is nonnegative.

3. Observe that ζK,T (s) = ζK,T1
(s) · ζK,T2

(s). Suppose ζK,T (s)n and ζK,T1
(s)n1 extend to meromorphic

functions with poles of order m and m1, respectively; the other two cases are identical. Then

ζK,T2(s)nn1 =
ζK,T (s)nn1

ζK,T1(s)nn1

extends to a meromorphic function in a neighborhood of s = 1 and has a pole there of order mn1 −m1n.
Thus, δ(T2) = mn1−m1n

nn1
= m

n −
m1

n1
= δ(T )− δ(T1), as desired.

4. This follows readily from 3.

5. This is obvious; m = 0 because ζK,T (s) is finite and positive. Moreover, there is no pole at s = 1.

�

Proposition 4.3. If T contains no primes p for which Np is prime (in Z), then δ(T ) = 0.

Proof. Let p be a prime in T . Since Np = pf (where p lies under p in Z and f denotes the inertial degree of p), we
must have f ≥ 2; if f = 1, Np would be prime. Moreover, for any given prime p ∈ Z, there are at most [K : Q]
primes of K lying over p. Thus, ζK,T (s) can be decomposed into a product

∏
1≤i≤[K:Q] gi(s) of d infinite products

over the prime numbers, with each factor of gi being either a 1 or a 1
1−p−fs (for every prime p). Thus, for any i,

gi(1) ≤
∏
p

1
1−p−fp ≤

∏
p

1
1−p−2 = ζ(2) = π2

6 . Thus, gi(s) is holomorphic at s = 1, meaning that the order of the
pole there must be 0 (recall that polar density cannot be negative). We conclude that δ(T ) = 0. �

Corollary 4.4. Let T1 and T2 be sets of prime ideals in K. If the sets differ only by primes p for which Np is not prime
and one of the two sets has polar density, then so does the other, and the densities are equal.

At last, the time has come to exploit the power of polar density. It turns out we can derive some important analytic
results.
Theorem 4.5. Let L ⊃ K be a field extension of finite degree and let M be its Galois closure. Then the set of prime
ideals of K that split completely in L has density 1

[M :K] .

Proof. The first thing to notice is that a prime ideal p of K splits completely in L if and only if it splits completely in M .
One direction is easy: if it splits completely in M , it must split completely in the subfield L. If it splits completely in L,
then it also splits completely in every conjugate field L′. All of these conjugate fields must lie under the decomposition
field (the fixed field of the decomposition group of Gal(M/K)), and so their compositum is a field lying under the
decomposition field as well. This field is just M ! p splits completely only up to and including the decomposition field,
so we conclude that it splits completely in M as well.

Thus, it suffices to prove this theorem with the assumption that L is Galois over K. Let S be the set of prime ideals
of K that split completely in L and let T be the primes of L lying over a prime ideal in S. For each p ∈ S, there are
exactly [L : K] prime ideals P ∈ T , and for each of them, NL

K(P) = p (where NL
K denotes norm). Thus, NP = Np

(where N denotes norm over Q). This tells us that ζL,T (s) = ζK,S(s)[L:K]. Also, T contains every prime ideal of L
that is unramified over K and for which NP is prime (in Z). Thus, T differs from the set of all prime ideals in L by a
set of polar density 0 (using Corollary 4.4), and so T has density 1. Moreover, this shows that ζK,S has the property
signifying that S is a set of polar density 1

[L:K] , as desired. �

Corollary 4.6. If f(x) ∈ K[x] splits into linear factors modulo p for all but finitely many prime ideals p of K, then f
splits into linear factors in K.

Proof. If L is the splitting field of f , then L is Galois over K. Now, use Theorem 4.5 on L/K. For more interesting
details, see Bhandarkar [8], Section 4. �
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Corollary 4.7. For every abelian extension L/K and every finite set S of primes of K including those that ramify in L,
let ISK denote the fractional ideals that are prime to all ideals in S. Then, the Artin map(

L/K

.

)
: ISK −→ Gal(L/K)

is surjective.

Proof. Let H be the image of the Artin map; it is some subgroup of Gal(L/K). If its fixed field is LH , then we see that
H = Gal(L/LH) is the image. For all p 6∈ S,

(
LH/K

p

)
=
(
L/K
p

)
|LH= 1, which implies that p splits completely in

LH . Thus, all but finitely many prime ideals of OK split completely in LH , so Theorem 4.5 tells us that [LH : K] = 1;
in other words, the Artin map is surjective. �

5 Dirichlet Density

Define two functions f(s) and g(s) for s > 1 and real. We write f(s) ∼ g(s) as s→ 1+ if lims→1+
f(s)
g(s) = 1. Then,

f(s) ∼ δ log 1
s−1 as s→ 1+ means

lim
s→1+

f(s)

log 1
s−1

= δ.

When f and g are holomorphic in a neighborhood of s = 1 except for possibly poles at s = 1, then f ∼ g if and only if
f and g differ by a function that is holomorphic in a neighborhood of s = 1.
Definition 5.1. Let T be a set of primes of K. If there exists a δ such that∑

p∈T

1

Nps
∼ δ log

1

s− 1
as s→ 1+

then we say that T has Dirichlet density δ.
Definition 5.2. If the limit

lim
x→∞

number of p ∈ T with Np ≤ x
number of p with Np ≤ x

exists, then we call it the natural density of T .

Natural density is much more intuitive than the other types of density, and one might wonder if at all natural density is
ever equal to Dirichlet density or polar density. The answer, though reassuring, is somewhat surprising:
Proposition 5.3.

1. If polar density exists, then so does Dirichlet density, and the two are equal.

2. If natural density exists, then so does Dirichlet density, and the two are equal.

Proof. We only prove the first part. If T has polar density m
n , then

ζK,T (s)n =
a

(s− 1)m
+

g(s)

(s− 1)m−1

where g is holomorphic near s = 1. Furthermore, a > 0 because ζK,T (s) > 0 for s > 1 and real. Taking logs and
applying Lemma 2.5 gives us

n
∑
p∈T

1

Nps
= m log

1

s− 1

In other words, T has Dirichlet density m
n , as desired. �

Remark 5.4. A set can have a Dirichlet density without having a natural density. For example, let T be the set of prime
numbers with leading digit 1. Then, T does not have a natural density, but it has a Dirichlet density, namely log10 2.
Thus, it is a stronger statement to say that a set has natural density.

Also, notice that polar densities are rational numbers. Thus, every set having a natural density that is irrational will not
have a polar density!

6
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Now, we shall see that Dirichlet density has similar properties to those of polar density:

Proposition 5.5 (Properties of Dirichlet Density).

1. The set of all prime ideals of K has Dirichlet density 1.

2. The Dirichlet density of any set is nonnegative.

3. If T is the disjoint union of T1 and T2, and two of the three Dirichlet densities exist, then so does the third, and
δ(T ) = δ(T1) + δ(T2).

4. If T ⊂ T ′, then δ(T ) ≤ δ(T ′).

5. If T is finite, then δ(T ) = 0.

Proof.

1. The set of prime ideals of K even has polar density 1, which is stronger.

2. For s > 0 and real, 1
Nps > 0 and for s→ 1+, log 1

s−1 > 0, so Dirichlet density must be nonnegative.

3. Clearly, ∑
p∈T

1

Nps
=
∑
p∈T1

1

Nps
+
∑
p∈T2

1

Nps

so long as <(s) > 1. Thus, if∑
p∈T1

1

Nps
∼ δ1 log

1

s− 1
and

∑
p∈T2

1

Nps
∼ δ2 log

1

s− 1

then ∑
p∈T

1

Nps
∼ (δ1 + δ2) log

1

s− 1

The other two cases are virtually identical to this one.

4. This readily follows from 3.

5. When T is finite,
∑

p∈T
1

Nps is holomorphic for all s and thus bounded near any point. In particular, as
s→ 1+, the Dirichlet density must go to 0.

�

Proposition 5.6. Let T be the set of prime ideals of K having degree 1 over Q, i.e., for which the inertial degree
f(p/p) = 1. Then, δ(T ) = 1.

Proof. Proposition 4.3 tells us that the complement of T has polar density equal to 0, and thus, Dirichlet density equal
to 0 as well. �

Corollary 5.7. Let T be as in the proposition. Then, for every set S of primes in K having Dirichlet density,

δ(T ∩ S) = δ(S)

Proof. The complement T ′ of T has Dirichlet density 0, so δ(S) = δ(S ∩ T ) + δ(S ∩ T ′) = δ(S ∩ T ), since
δ(S ∩ T ′) ≤ δ(T ′) = 0. �
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6 Making Magic out of L-functions

At last, it is time to put together some of our basic results. We can do this by playing around with L-functions. The
value of L-functions, especially as s→ 1+ is crucial to our discussion surrounding the Čebotarev Density Theorem.
Definition 6.1. Recall that for a number field K and a modulus m, we say that a subgroup H ⊂ ImK is a congruence
subgroup for m if it satisfies PK,1 ⊂ H ⊂ ImK . In this case, the quotient ImK/H is called a generalized ideal class group
for m.
Proposition 6.2. Let m be a modulus for K and let H be a congruence subgroup for m:

PK,1 ⊂ H ⊂ ImK
Then, if L(1, χ) is nonzero for all nontrivial characters χ of the ray class group ImK/H , δ({p ∈ H}) = 1

(ImK :H) ;
otherwise, it is 0.

Proof. Let h = (ImK : H) and χ be a character of ImK trivial on H , and as usual, let

L(s, χ) =
∏
p-m

1

1− χ(p)Np−s

Lemma 2.5 tells us that

logL(s, χ) ∼
∑
p-m

χ(p)

Nps
as s→ 1+

But Proposition 3.3 (note that ImK/H is abelian) gives us∑
χ

χ(p) =

{
h if p ∈ H
0 if p 6∈ H

Thus, summing over all χ, we get ∑
χ

logL(s, χ) ∼ h
∑
p∈H

1

Nps
as s→ 1+

Now, if χ 6= χ0, then L(s, χ) is holomorphic near s = 1, ie. L(s, χ) = (s − 1)m(χ)(g(s)), where m(χ) ≥ 0 and
g(1) 6= 0. Thus, logL(s, χ) ∼ m(χ) log(s− 1) = −m(χ) log 1

s−1 . If χ = χ0, then

L(s, χ) =
ζK(s)∏

p|m
1

1−Np−s

which means that
logL(s, χ0) ∼ log ζK(s) ∼ log

1

s− 1

Thus, we find that

h
∑
p∈H

1

Nps
∼ (1−

∑
χ6=χ0

m(χ)) log
1

s− 1

and hence

δ({p ∈ H}) =
1−

∑
χ 6=χ0

m(χ)

h

This shows that δ({p ∈ H}) = 1
h if L(1, χ) 6= 0 for every χ 6= χ0; otherwise, the density must be 0 (i.e. exactly

one of the m(χ) must be equal to 1, meaning at most one L(s, χ) can have a zero at s = 1 since Dirichlet density is
nonnegative, and it must be a simple zero). �

Now, we visit an inequality that will give us useful information about L-functions:
Theorem 6.3 (The Second Inequality). For every Galois extension L of K and modulus m of K,

(ImK : PK,1 ·NL
K(ImL )) ≤ [L : K]

Note that here, ImL denotes the set of fractional ideals of L (lying above ideals of ImK) prime to m.

8
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Proof. Let H = PK,1 · NL
K(ImL ). If p splits in L, then f(P/p) = 1 for all P ⊂ OL lying over p ⊂ OK , in which

case p is the norm of any prime ideal of OL lying over it. Thus, {p ∈ H} contains the set of prime ideals splitting
completely in L. Then, Theorem 4.5 tells us that

δ({p ∈ H}) ≥ [L : K]−1 > 0

Moreover, Proposition 6.2 tells us that if δ({p ∈ H}) > 0, it must be equal to (ImK : H)−1. This only occurs if for all
nontrivial characters χ of ImK/H , L(1, χ) 6= 0. Finally, we have

(ImK : H) = δ({p ∈ H})−1 ≤ [L : K]

�

This theorem is particularly important because it tells us that if H is of the form as in Proposition 6.2, then L(1, χ) 6= 0
for all nontrivial characters χ of ImK/H . But when we are given a Galois extension L ⊃ K, how do we know this
hypothesis is satisfied? Lucky for us, Artin Reciprocity comes to the rescue!
Theorem 6.4 (Reciprocity Law). Let L be a finite Abelian extension of K, and let S be the set of primes of K ramifying
in L. Then, the Artin map (

L/K

.

)
: ISK −→ Gal(L/K)

admits a modulus m such that a prime of K (finite or infinite) ramifies if and only if it divides m and induces the
isomorphism

ImK/(PK,1 ·NL
K(ImL ))

∼−→ Gal(L/K)

This theorem is literally the very foundation of class field theory. To use this theorem, we also introduce another
important theorem of class field theory: the Existence Theorem.
Theorem 6.5 (Existence Theorem). For every congruence subgroupH modulo m, there exists a finite Abelian extension
L/K such that H = PK,1 ·NL

K(ImL ).

This theorem is nice because it complements Artin Reciprocity in a way that allows us to construct an important
bijection. Notice that for H and L as in the theorem, Artin Reciprocity allows us to construct the isomorphism

ImK/H
∼−→ Gal(L/K)

In particular, there is a field Lm known as the ray class field modulo m for which the Artin map defines an isomorphism

Cm = ImK/(PK,1 ·NL
K(ImL ))

∼−→ Gal(Lm/K)

For a field L ⊂ Lm, set
NL
K(Cm,L) = (PK,1 ·NL

K(ImL ) (mod PK,1)

Thus, the Existence Theorem provides the following beautiful corollary:
Corollary 6.6. For a modulus m, the map L 7→ NL

K(Cm,L) is a bijection from the set of Abelian extensions of K
contained in Lm to the set of subgroups of Cm.

Proof. This is a rather neat result of applying the Galois correspondence. �

Thus, class field theory shows us that the hypothesis of Proposition 6.2 is satisfied: every congruence subgroup H is of
the form PK,1 ·NL

K(ImL ) for a unique Abelian extension L ⊃ K. For our particular discussion, we obtain the following
corollary:
Corollary 6.7. For any modulus m of K and any nontrivial Dirichlet character χ : Cm −→ C×, L(1, χ) 6= 0.

7 Proof of the Cebotarev Density Theorem

At last, we have the tools necessary to prove our main theorem. We will start by handling the abelian case and cleverly
use that to tackle the nonabelian case.
Theorem 7.1. Let m be a modulus for K, and let H be a congruence subgroup for m. For any class t ∈ ImK/H , the set
of prime ideals in t has Dirichlet density 1

(ImK :H) .

9
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Proof. It suffices to prove a more general version of Proposition 6.2. Consider some class t ∈ ImK/H and let a be a
coset representative of this class. Also, let h = (ImK : H). Much like we considered the sum

∑
χ logL(s, χ), we now

consider the sum∑
χ

χ(a)−1 logL(s, χ) ∼
∑
χ

χ(a)−1
∑
p-m

χ(p)

Nps
=
∑
p-m

∑
χ

χ(a−1p)

Nps
= h

∑
p∈t

1

Nps

where we obtain the last equality by applying our character orthogonality relations.

Now, Corollary 6.7 shows us that L(1, χ) 6= 0 for any nontrivial χ. Thus, using the terminology of Proposition 6.2,
we see that if L(s, χ) = (s − 1)m(χ)g(s) near s = 1, then in fact m(χ) = 0. Thus, density-wise, logL(s, χ) ∼
−m(χ) log 1

s−1 = 0 as s→ 1+, so L(s, χ) for nontrivial characters χ do not contribute to the Dirichlet density.

However, if χ = χ0, then as we found before, logL(s, χ0) ∼ log 1
s−1 . Thus, by summing logL(s, χ) across all χ in

the character group, we see that

h
∑
p∈t

1

Nps
∼ log

1

s− 1
or δ({p ∈ t}) =

∑
p∈t

1
Nps

log 1
s−1

=
1

h

as desired. �

Corollary 7.2. Let L ⊃ K be a finite Abelian extension and let σ ∈ Gal(L/K). Then, the set of prime ideals p of K

that are unramified in L and for which
(
L/K
p

)
= σ has Dirichlet density 1

[L:K] .

Proof. Artin Reciprocity gives us the isomorphism ImK/H
∼−→ Gal(L/K) for some modulus m and congruence

subgroup H . Thus, the inverse image of σ is one entire class t of ImK/H . At this point, we may apply Theorem 7.1 to
obtain the result. �

Voilà! We have just proven the Čebotarev Density Theorem for Abelian extensions L ⊃ K! At this point, we may
extend to the general (not necessarily abelian) case:

Theorem 7.3 (Čebotarev). Let L be a finite Galois extension of the field K and suppose σ ∈ Gal(L/K). Moreover,
denote C by the conjugacy class of σ in Gal(L/K). Then, the set

T = {p a prime ideal in OK | p unramified in L,
(
L/K

p

)
= C}

has Dirichlet density

δ(T ) =
|C|

|Gal(L/K)|
=
|C|

[L : K]
.

Proof. Since Gal(L/K) is not necessarily abelian, we try to cleverly reduce to this case. Let σ ∈ Gal(L/K) have
order f and let M = L〈σ〉 be the fixed field of the set of automorphisms 〈σ〉 (subgroup of automorphisms generated by
σ). Then, L is a cyclic extension of M of degree f , and the Artin map gives us an isomorphism

Cm/H
∼−→ 〈σ〉

for some modulus m of M and H = PM,1 ·NL
M (ImL ).

Now, let p be a prime ofOK , q be prime lying above p inOM , and P be a prime lying above q inOL. If we let c = |C|
and d = [L : K], we must show that δ(T ) = c

d . Also, we must note that in this proof, we ignore the finitely many
primes that are not prime to m (i.e. primes that ramify).

Let

TM,σ = {q ⊂ OM |
(
L/M

q

)
= σ, f(q, p) = 1}

By Corollary 7.2, we know that the set of primes satisfying the first condition (i.e.
(
L/M
q

)
= σ) of TM,σ has density 1

f ,

and thus, TM,σ has density 1
f (using Corollary 5.7).

10
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Now, let

TL,σ = {P ⊂ OL |
(
L/K

P

)
= σ}

We aim to relate TM,σ and TL,σ .

Lemma 7.4. We have the following two assertions:

1. The map P 7→ q = P ∩ OM defines a bijection TL,σ → TM,σ.

2. The map P 7→ p = P ∩ OK : TL,σ → T sends exactly d
cf primes of TL,σ to each prime of T .

Proof.

1. Take some P ∈ TL,σ and let q = P ∩ OM and p = P ∩ OK . Then, the Decomposition Group D(P |
p) ∼= Gal(OL/P / OK/p) is generated by σ but σ fixes the residue field OM/q (because it fixes M ). Thus,
OM/q = OK/p, meaning that f(q/p) = 1. This means that q ∈ TM,σ, so we have a map

P 7→ q = P ∩ OM : TL,σ → TM,σ

This map is injective because f(P/q) = f(q/p)−1f(P/p) = 1 · f = f , so P is the only prime of OL lying
over q. Moreover, this map is surjective because for any prime P lying over q ∈ TM,σ,(

L/K

P

)
=

(
L/K

P

)f(q/p)
=

(
L/M

q

)
= σ

and so P lies in TL,σ . Thus, our map is a bijection.

2. Fix a p0 ∈ T and let P0 ∈ TL,σ lie over p0. Then, for τ ∈ Gal(L/K),(
L/K

τP0

)
= τ

(
L/K

P0

)
τ−1

and so

τ

(
L/K

P0

)
τ−1 = σ ⇐⇒ τ ∈ CG(σ)

where CG(σ) denotes the centralizer of σ in Gal(L/K). Therefore, the map τ 7→ τP0 gives us a bijection
C(σ)/D(P0/p0) −→ {P ∈ TL,σ | P ∩ OK = p0}

where D(P0/p0) denotes decomposition group. The decomposition group is 〈σ〉, which has order f and
CG(σ) has order dc because there is a bijection

τ 7→ τστ−1 : Gal(L/K)/CG(σ)→ C

Therefore, (CG(σ) : D(P0/p0)) = d
cf . Thus, we have shown that for each p ∈ T , there are exactly d

cf primes
P ∈ TL,σ lying over p. This completes part 2.

�

Returning to our proof, we can combine statements 1 and 2 to obtain the map
q 7→ p = q ∩ OK

which is a d
cf : 1 map TM,σ → T . For such a q, NM

K (q) = p, so Nq = Np. Hence∑
p∈T

1

Nps
=
cf

d

∑
q∈TM,σ

1

Nqs
∼ cf

d
· 1

d
log

1

s− 1
=
c

d
log

1

s− 1

which completes the proof of the Čebotarev Density Theorem. �

Remark 7.5. Interestingly enough, the prime number theorem generalizes nicely to general number fields; it is called
the Landau Prime Ideal Theorem. Using this theorem and keeping the notation we used above, if we set

πC(x) = {p is a finite, unramified prime ideal of OK |
(
L/K

p

)
= C,Np ≤ x}

then we can obtain the following effective form of the Density Theorem:

πC(x) ∼ c

d

x

log x
.
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8 Applications of the Density Theorem

The Density Theorem has many applications throughout number theory. By no means do we provide a full treatment of
its applications; rather, we focus on a few rather elegant examples. We start by pointing out a simple yet special case:
Dirichlet’s Theorem on Primes in Arithmetic Progression.
Corollary 8.1 (Dirichlet). For any positive integers a and m, with gcd(a,m) = 1, there are infinitely many primes p
for which p ≡ a (mod m).

Proof. Using the Čebotarev Density Theorem, we will prove an even stronger result: that the set of primes ≡ a
(mod m) has Dirichlet density 1

φ(m) in the set of primes (of Z), where φ denotes the totient function.

Now, let ζm be an mth root of unity. Let K = Q and L = Q(ζm) be a cyclotomic extension. We know that L/K is
Galois and that Gal(L/K) ∼= (Z/mZ)×. This isomorphism can be made explicit by taking some a ∈ (Z/mZ)× and
mapping it to the unique automorphism that takes ζkm to ζakm .

For a prime number p ∈ Z, N(pZ) = p. If P ⊂ OL is a prime lying over p such that σ ∈ Gal(L/K) satisfies
σ(α) ≡ αN(pZ) (mod P), we must have σ(ζkm) = ζpkm for all k. As long as p - m, pZ does not ramify in L, in
which case

(
L/K
pZ

)
= p̄ ∈ Gal(L/K), where p̄ is the class of p modulo m. Thus,

(
L/K
pZ

)
= a if and only if p ≡ a

(mod m). At this point, the Density Theorem states that the density of primes pZ of Q such that
(
L/K
pZ

)
= a is

1
|Gal(L/K)| = 1

φ(m) , as desired. �

So being able to prove Dirichlet’s theorem with a snap of our fingers is a sign of just how powerful the Čebotarev
Density Theorem is! Now, we move on to another interesting application, which explores primes that split completely
in number fields. In particular, these primes can characterize a given extension L ⊃ K. First, we introduce some
terminology.
Definition 8.2. Given two sets S and T , we say S⊂̇T if S ⊂ T up to a finite set of elements. We also say S=̇T if
S⊂̇T and T ⊂̇S.
Definition 8.3. Given an extension L ⊃ K, we set

SL/K = {p is a finite prime ideal of K | p splits completely in L}

.

Also, let

S̃L/K = {p is a finite prime ideal of OK | p unramified in L, f(P | p) = 1 for some prime P of L lying over p}

Using this terminology, we can effectively state the following powerful theorem:
Theorem 8.4. Let L and M be finite extensions of K. Then:

1. If M is Galois over K, then L ⊂M ⇐⇒ SM/K⊂̇SL/K .

2. If L is Galois over K, then L ⊂M ⇐⇒ S̃M/K⊂̇SL/K

Proof. We begin with the proof of 2. When L ⊂ M , we easily have S̃M/K⊂̇SL/K ; indeed, for p ∈ S̃M/K , f(P |
p) = 1 for some P lying over p in OM . Thus, if q is a prime of OL lying over p and under P, then we must have
f(q | p) = 1. But since inertial degrees of all conjugates of a prime ideal are the same in a Galois extension, we
conclude that p has inertial degree f = 1 in L. Moreover, since it is unramified, we conclude that p splits completely in
L, and thus p ∈ SL/K as well.

Conversely, suppose that S̃M/K⊂̇SL/K , and let N be a Galois extension of K containing both L and M ; it suffices to
show that Gal(N/M) ⊂ Gal(N/L). Thus, given σ ∈ Gal(N/M), we need to prove that σ |L= 1. By the Čebotarev
Density Theorem, there is a prime p in K, unramified in N such that

(
N/K
p

)
is the conjugacy class of σ. Thus, there

is some prime P of N for which
(
N/K
P

)
= σ. We claim that p ∈ S̃M/K . To see this, let P′ = P ∩ OM . Then, for

α ∈ OM ,
α ≡ σ(α) ≡ αN(p) (mod P′)

12
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where the first congruence follows from σ |M= 1 and the second from the definition of the Artin symbol. Thus, the Artin
symbol is trivial, meaning that f(P′ | p) = 1 (since f is the order of the decomposition group generated by the Artin
symbol, which is trivial). This means p ∈ S̃M/K , as desired. The Density Theorem implies that there are infinitely many

such p’s. Thus, S̃M/K⊂̇SL/K tells us that p ∈ SL/K , i.e.,
(
L/K
p

)
= 1, meaning that σ |L=

(
N/K
P

)
|L=

(
L/K
p

)
= 1,

as desired.

Now, to prove 1, note that L ⊂M easily implies SM/K⊂̇SL/K using the exact same reasoning as in the proof of part 2
above. To show the other direction, let L′ be the Galois closure of L over K. Using the reasoning from Theorem 4.5,
we see that a prime of K splits completely in L if and only if it splits completely in L′. Thus, SL/K = SL′/K . Thus,
our hypothesis SM/K⊂̇SL/K may be rephrased as SM/K⊂̇SL′/K . By part 2, we obtain L′ ⊂M , so L ⊂M , and we
are done. �

Why did we bother to prove all of that? For one, it tells us about the relationship between field extension and the prime
ideals contained in them. Moreover, it allows us to formulate the following corollary:

Corollary 8.5. Let L and M be Galois extensions of K. Then:

1. L ⊂M ⇐⇒ SM/K⊂̇SL/K .

2. L = M ⇐⇒ SM/K=̇SL/K .

Proof. Notice first that 1 immediately implies 2, so it suffices to prove just 1. Now, observe that if M is Galois over K,
then S̃M/K reduces to SM/K , so applying Theorem 8.4 immediately proves part 1 of this corollary. �

Now, we introduce one last application, which is to the theory of binary quadratic forms. Although we do not prove it
here, it points out a beautiful interplay between binary quadratic forms and ideals in number fields.

Theorem 8.6. Let f(x, y) = ax2 + bxy + cy2 be a primitive positive definite binary quadratic form of discriminant
D < 0. Moreover, let S be the set of primes represented by f . Then, the Dirichlet density δ(S) exists and is equal to

δ(S) =

{
1

2h(D) if f is properly equivalent to its opposite
1

h(D) otherwise

where h(D) is the famous class number. In particular, f represents infinitely many prime numbers!

Proof. We omit the proof because it relies on developing a theory of ideals in orders of imaginary quadratic fields. Still,
we refer the reader to Cox [1]. �

9 Some Parting Remarks

The Čebotarev Density Theorem is elegant and powerful. It is at a crossroads between algebraic and analytic number
theory, and has various applications across number theory. We sincerely hope the reader has taken away something
useful from this paper and is inclined to learn more about related topics.
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