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1 Introduction

This paper is meant as a summary introduction into the idea of homotopy groups of spheres. We will
briefly discuss the meaning of homotopy groups and higher-dimensional spheres, and then provide the
reader some simple low-dimensional examples.

The main aspect of this paper is the hopf fibration, a special non-trivial map from the sphere embedded
in four dimensions to the traditional sphere embedded in three dimensions. Some necessary background
information is provided, followed by a discussion of interesting details of the mapping, as well as the
applications of the mapping to higher homotopy groups.

This paper is designed for students in an introductory topology course, and can be easily understood
with a basic knowledge of the concepts of topological spaces and fundamental groups.

2 Homotopy Groups

In class, we have been familiarized with the idea of a fundamental group, which is defined to be the
group of homotopy classes of loops in a topological space X based at point p:

π1(X, p) = {[γ] : γ is a loop based at p}

A loop is homotopic to a circle S1 and π1 can thus be interpreted as the group of mappings up to
homotopy of f : S1 → X. By using this alternative definition, the concept of fundamental groups can be
extended for ”loops” of higher dimensions. We then define:

πn(X, p) = {[γ] : Sn → X, γ(0, ..., 0) = p}

πn is called the nth homotopy group and can be seen as a n-dimensional analogue of the fundamental
group π1.

3 The n-Sphere (Sn)

3.1 Overview

Before we can explore the concepts of the Hopf Fibration, it is important to have an understanding of
the structure and properties of spheres. In particular, we would like to generalize the ”ordinary” sphere
S2, which is a 2-dimensional object embedded in R3, to any dimension. To begin, we can look at the
2-sphere, as well as its low dimension analogues. S2 is defined as the set of points (x, y, z) ∈ R3 of
distance 1 from the origin (such that x2 + y2 + z2 = 1); similarly, S1 (the circle) is the set of points
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(x, y) ∈ R2 such that x2 + y2 = 1; and the 0-dimensional sphere is essentially the points ±1 on the real
number line. Extending this idea to higher dimensions, the n-sphere Sn can then be defined as:

Sn = {(x1, x2, ..., xn+1) ∈ Rn+1 :

n+1∑
i=1

x2i = 1}

Although n-spheres are difficult to visualize in higher dimensions, they can be understood intuitively as
the set of points (x1, ..., xn+1) that are one unit away from the origin.

3.2 Stereographic Projection

It is often useful in topology to interpret an object in various ways, and for the purpose of deriving the
hopf fibration, we will outline the projection of the n-sphere into Rn, called the stereographic projection.
For instance, we provide an example of the stereographic projection of the 2-sphere onto the plane R2.
Let N(0, 0, 1) be the north pole of the sphere. Define σ2 : S2 −{N} → R2 to be the mapping that sends
a point p ∈ S2, p 6= N to the intersection of the line containing N and p with the plane z = 0. This
mapping is given explicitly by:

σ2(x, y, z) =

(
x

1− z
,

y

1− z

)
And the inverse mapping is given by:

σ−1
2 (x0, y0) =

(
2x0

x02 + y02 + 1
,

2y0
x02 + y02 + 1

,
x0

2 + y0
2 − 1

x02 + y02 + 1

)

The derivation involves dull calculations involving coordinate geometry and will not be shown. However,
we know that there exists a unique line that passes through N and p and that the line will always
intersect the plane z = 0 exactly once, so σ is well-defined. It is also quite easy to check its bijectivity
and the proof can be left as an exercise for the reader.

Perhaps the most important takeaway from this mapping is that it demonstrates a homeomorphism
between the 2-sphere minus a point and the real plane, which tells us that the sphere behaves very
similarly to a plane. Another way to convey the mapping is to include the north pole in the domain,
but at the same time add a point at infinity to the codomain (σ2 : S2 → R2 + {∞}). By definition
of the mapping, if you take p to be equal to N , the line containing p and N thus becomes a line that is
parallel to the plane z = 0, so we can think of the intersection between the line and the plane as a point
at infinity.

In general, we can extend the function above to the stereographic projection of the n-sphere σ : Sn −
{N(0, ..., 1)} → Rn. defined by:

σn(x1, x2, ..., xn+1) =

(
x1

1− xn+1
,

x2
1− xn+1

, ...,
xn

1− xn+1

)

with an inverse of:

σ−1
n (y1, y2, ..., yn) =

1
n∑
i=1

y2i + 1

(
2y1, 2y2, ..., 2yn,

n∑
i=1

y2i − 1

)

Another interesting fact about the stereographic projection that is perhaps worth mentioning is that the
mapping preserves angles (conformal) and circles. That is, given a circle or an angle between two lines
on the sphere, the image of the circle is also a circle and the image of the lines would intersect at the
same angle.
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4 Homotopy of Spheres

Now let us examine the homotopy groups of spheres, πk(Sn).

First, let us examine the case k < n. There are no nontrivial continuous maps from a lower-dimensional
sphere to a higher-dimensional sphere. All such maps are either non-surjective or can be deformed to be
so, and can thus be considered maps to a punctured sphere. As explained above, the punctured n-sphere
is homeomorphic to real n-space through stereographic projection, and is thus contractible. Therefore,
any such mapping can be homotoped to a point, so is trivial, yielding πk(Sn) = 0.

Next, the case k = n comes as a consequence of the Hurewicz theorem. Because the n-sphere is path-
connected, the first nonzero homotopy group is isomorphic to the first nonzero homology group. The
first and only nonzero homology group is Hn(Sn) = Z, which then implies that πn(Ss) = Z.

The interesting part of homotopy groups is the case k > n. The higher homology groups of spheres are
all trivial, but this is not always, or often, true for higher homotopy groups. The only trivial case is that
of S1: for any k > 1, πk(S1) = 0. This results from the 1-sphere being covered by the contractible real
line: because the k-sphere is simply connected, any map to S1 can be lifted to the real line and then
homotoped to a point.

Unfortunately, higher-dimensional spheres do not have contractible covers and thus do not have trivial
higher homotopy groups. The first such example is the case π3(S2), the homotopy group of maps from
the 3-sphere to the 2-sphere. We will now begin to introduce the hopf fibration, a nontrivial mapping
that will generate this homotopy group.

5 Fiber Bundles: a Brief Overview

In order to understand the hopf fibration, it is important to first briefly explain a few key concepts. First
is the idea of a fiber bundle.

A fiber bundle is a structure consisting of three spaces (F,E,B) and a continuous surjective map p :
E → B. We require p to be locally trivial, in that for every point x ∈ B, there exists a neighborhood
U ⊂ B containing x such that the preimage of U is homeomorphic to U × F . We call E the total space,

B the base space, and F the fiber. The bundle can be denoted denoted F ↪→ E
p−→ B.

The essential structure of a fiber bundle is a map in which the preimage of every point in the base space
is homeomorphic to the fiber. A fibration is a looser form of a fiber bundle in that the preimages, or
fibers, of points in the base space must only be homotopy equivalent, not necessarily homeomorphic.

6 Quaternions

In order to define the hopf fibration, we must introduce, quaternions, an extension of the complex
numbers. Complex numbers extend the real numbers by combining two real coordinates (a,b) in the
form a+ bi. 1 and i form a vector basis of R2, satisfying the relationship i2 = −1. Similarly, quaternions
extend complex numbers using a basis 1, i, j, k of R4. Four real coordinates (a, b, c, d) are combined to
form a quaternion a+ ib+jc+kd, and the basis elements satisfy the properties i2 = j2 = k2 = ijk = −1.
From these relations we can derive an understanding of quaternion multiplication, which, while not
commutative, is well-defined.

Quaternions can be used to define rotations in R3: the space is rotated about the origin by a vector (b, c, d)
in R3 and an angle 2 arccos(a). The explicit rotation for a quaternion r is a linear mapping Rr : R3 → R3

defined by Rr(p) = rpr̄. In this map, p = (p1, p2, p3), a point in R3 is associated to the pure quaternion
(having no real part) p1i + p2j + p3k, and then conjugated by r under quaternion multiplication. This
will always result in another pure quaternion, which is then associated to the corresponding point in R3.
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Because only the direction and not the magnitude of the quaternion vector is used in rotations, we
can restrict r to the set of unit quaternions defined by a2 + b2 + c2 + d2 = 1, which clearly forms the
3-sphere, S3. Only antipodal points correspond to the same rotation, so the quotient set by equating
antipodal points forms the 3D rotation group SO(3), the group of rotations around the origin in R3

under composition.

7 The Hopf Fibration

7.1 A map in three forms

Now we can define the Hopf fibration using quaternions. For P0 = (1, 0, 0),

h(r) = Rr(P0) = rir̄ (1)

The fibration takes a unit quaternion in S3 and uses it to perform a rotation on P0. The rotation will
preserve the length of P0, and thus send it to another point on the sphere. We can calculate the real
equivalent h : S3 → S2 by assigning each unit quaternion to its corresponding point in R3:

h(a, b, c, d) = (a2 + b2 − c2 − d2, 2(ad− bc), 2(bd− ac)) (2)

The simplest equivalent mapping is from the unit sphere in C2, which is homeomorhpic to S3, to Ĉ =
C ∪ {∞}, which is homeomorphic to S2 through stereographic projection.

h(z1, z2) = z1/z2 (3)

This also defines a quotient set on S3 in C2 by the equivalence relation (z1, z2) ∼ (w1, w2) if (w1, w2) =
(λz1, λz2) for some λ in C with |λ| = 1.

7.2 Fiber structure

We can see from the equivalence relation above that the preimage of a point z0 is a set of the form
{(λz1, λz2) : λ = eiθ}. This is a circle in S3; in fact, it is a great circle, as it connects antipodal points
(z1, z2) and (−z1,−z2). Thus, the preimage of every point is homeomorphic to S1. This defines a fiber
bundle S1 ↪→ S3 → S2.

As in the general case, for every point p there exists a neighborhood U with preimage in S3 homeo-
morphic to U × S1. Particularly of note, a circle of latitude in S2 (homeomorphic to S1) has preimage
homeomorphic to S1 × S1, a torus.

Under stereographic projection onto R3, the fiber of (1, 0, 0) forms the x-axis and the fiber of (−1, 0, 0)
forms the unit circle in the yz-plane. Every other point has a fiber which forms a Villarceau circle of a
torus (essentially one part of a diagonal cross-section). These tori are both nested and space-filling when
projected. Another important and interesting aspect of the fibers is that all projected fiber circles are
linked- that is, each circle intersects the plane of each other circle exactly twice, once inside the circle
and once outside.

8 Application to Homotopy Groups

8.1 π3(S2)

The hopf fibration can be used to generate a set of homotopy classes of maps from S3 to S2. Instead of
each quaternion rotating P0 by an angle θ equal to 2 arccos(a), maps rotating by nθ for any n ∈ Z are
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also continuous and form a unique homotopy class. The hopf fibration is thus a generator for the third
homotopy group of S2.

As it turns out, there are no other nontrivial continuous mappings (up to homotopy) from S3 to S2, so
π3(S2) ∼= Z.

8.2 Higher homotopy groups of the 2-sphere and 3-sphere

In order to understand higher-homotopy relations of the two spheres, we must now introduce the concept
of an exact sequence. An exact sequence is a sequence of maps between a sequence of spaces, such that
the image of one map is equal to the kernel of the next map.

· · · → Ai−1
αi−1−−−→ Ai

αi−→ Ai+1 → · · · (4)

The fiber bundle can be viewed as a short exact sequence, consisting of three spaces. The hopf fibration’s
sequence is the following:

0→ S1 → S3 h−→ S2 → 0 (5)

This correctly implies that the inclusion map is injective and the hopf map is bijective. More interestingly,
a fibration creates a an infinite, or long, exact sequence of the homotopy groups of the three spaces:

· · · → πk(S1)→ πk(S3)→ πk(S2)→ πk−1(S1)→ · · · → π0(S1)→ π0(S3) (6)

The homomorphisms πk(S1)→ πk(S3) and πk(S3)→ πk(S2) are those induced by the inclusion map and
the hopf map. The third homomorphism can be properly defined to make the sequence exact, but this
is very complicated and will not be shown here.

Because every homotopy group of S1 is trivial, we can divide the long sequence into subsequences
0→ πk(S3)→ πk(S2)→ 0 for all k > 2, which yields

πk(S3) ∼= πk(S2) (7)

Clearly the second homotopy groups of these spheres differ, as π2(S2) = Z, whereas π2(S3) is trivial.
However, the hopf fibration is able to tell us that all higher homotopy groups of the three-sphere and
the two-sphere are equal. This is a very significant result for the homotopy groups of spheres! While it
does not tell us what those homotopy groups are (this is an ongoing problem in mathematics), it does
guarantee that they will be the same for both spheres.

8.3 Generalizations of the hopf fibration

The standard hopf fibration can be generalized as

S1 ↪→ S2n+1 → CPn (8)

For n = 1, this is the fibration discussed above, as CP1 is the Riemann sphere, which is equivalent to
the two-sphere in R3.

Similarly we can examine Hn, quaternionic space, defined in a similar way to Rn and Cn, yielding

S3 ↪→ S4n+3 → HPn (9)

The n = 1 case again yields a fibration of spheres, now S3 ↪→ S7 → S4. It can be obtained by dividing
two unit quaternions, just as the base hopf map was defined by dividing two unit complex numbers. The
exact sequence generated by this fibration yields a slightly more complicated yet still useful result:

πn(S4) = πn(S7)× πn−1(S3) (10)

5



Likewise, a fibration can be created from S8n+7 to OPn, octonionic projective space, with fibers S7.
Once again, for the n = 1 case, we can construct a fibration by dividing unit octionions, yielding
S7 ↪→ S15 → S8, which yields the relation πn(S8) = πn(S15)× πn−1(S7)

Interestingly, there are no more higher-dimensional fibrations entirely of spheres. This results from R,
C, H, and O being the only normed division algebras over the real numbers. This essentially means
that division is well-defined, so the hopf map h(x1, x2) = x1/x2 is a well-defined, continuous fibration of
spheres.

9 Conclusions

This paper has provided a brief explanation of homotopy groups and the hopf fibration in order to
introduce the complex problem that is the computation of homotopy groups of spheres, an active area of
research in algebraic topology. Readers are encouraged to further investigate aspects of these homotopy
groups, including the stable homotopy groups and spectral sequence computation.
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