
The Journey of a Lost Mathematician in Search of Cheap Gas

Sam Florin

February 2019

1 The Setup

At the start of this 1, 000 week escapade, two factors must be chosen: the number of gas stations,

G, and the cost of gas, p. The price of gas at each of these gas stations is chosen independently at

random in [p, 2p]. Every week for 1, 000 weeks, he can visit any of these gas stations and buy a gallon

of gas. Because these gas stations are in such high need for customers, at the end of each week, they

will reduce their prices by $1. These gas stations also have some nice customer perks. If you have

built a streak with a gas station and have gone there for the last n weeks, the next week, in addition

to the regular 1$ discount, the gas station will reduce the price by an extra $n. The catch is, if at

the end of any week a gas station reduces their price below the cost of gas, p, they will realize they

are no longer making a profit and double their asking price.

2 The Strategy

Our mathematician has to buy gas for 1, 000 weeks and wants to spend the least amount of money.

At the beginning of this trip, he knows none of the prices at the stations but he does know G and p.

He also knows the process the gas stations use to compute next week’s prices and will therefore know

any future prices at a gas station once he visits it once. Our strategy depends on a bound, b to be

picked before hand. This essentially represents how much he is willing to spend before he searches an

unknown station. After picking a random station to visit during the first week, his thought process

works as follows:

1. Consider what the price would be next week for each of the stations he knows if he were to

pick it this week.

2. Of the stations that would drop below p and therefore double were he to pick them, determine

the one that is the cheapest this week.

1

3. If the price at this station is ≤ bp, the product of our bound and the cost of gas, pick it.

4. If the price is > bp, search a random unseen gas station.

5. If the price is > bp but he has viewed all the gas stations already, pick the cheapest station.

6. If everything we’ve seen doubles, pick a new station.

3 Results

Although these rules are very simple and do not care much about streak or look ahead very far, they

still perform quite well. In addition, interesting patterns emerge when looking at the performance

of different bounds as the number of gas stations and the cost of gas varies. In analyzing the results

of applying this strategy, some interesting patterns emerge. Throughout this section, we will score a

bound b given a G and p by defining score(G, p, b) as the average ratio of the amount he pays to the

amount he would pay if he knew the price at every station to begin with and picked the cheapest

each time. Also, we can define cheap(G, p) as the minimal value of score(G, p, b) as b varies from

1 to 2. In other words, cheap(G, p) = min{score(G, p, b)|b ∈ [1, 2]}. We define bestBound(G, p) to

be x where score(G, p, x) = cheap(G, p). So bestBound is the bound our mathematician picks such

that, on average, be pay the least.

3.1 Our Favorite Gas Cost

In graphing cheap(G, p) for a fixed G and a varying p, an intriguing pattern occurs. The graphs

below have, as their horizontal axis p/G and as their vertical axis bestBound(G, p). It appears that

when p < G, bestBound(G, p) is consistently relatively low after which it increases quickly.

(a) G = 50 (b) G = 100 (c) G = 200

Figure 1: The comparison between p/G and bestBound(G, p)

I believe this occurs because our mathematician is more likely to go to the same relatively cheap

gas station over and over again before it doubles, whereas, when the gas stations are few, he is able

2

to search around more without getting too greedy. What this means for our mathematician is that

if, after moving to this town, he sees that the cost of gas is less than the number of gas stations, he

should rejoice because he can spend the least. But what bound should he pick?

3.2 Shifting Best Bounds

If we graph score(G, p, b) with b ∈ [1, 2], this image looks strictly increasing for small p meaning b

works best when it is close to 1. However, as p increases, this graph starts to have a decline at the

beginning to a minimum followed by an incline. The location of the minimum of this graph seems

to increase as p increases until p is around 2.5G at which point chaos ensues.

(a) Smooth increasing at p = 100 (b) Nice decline at p = 200 (c) Absolute madness at p = 300

Figure 2: The results of bounds at different prices showing the effect of b on score(100, p, b)

I made these graphs for 200 stations into a gif which I think better shows this process. That gif

is at https://gph.is/g/amzRJkZ

It makes sense that, as prices increase, higher bounds are better because lower bounds lead to

more searching for less overall reward. But where do these crazy graphs at higher p come from.

3.3 Ranges

The clear answer is that the ranges of the graphs drastically increase above a certain point. That

can be seen in the graph below.

3

https://gph.is/g/amzRJkZ

Figure 3: The range of possible values of score(G, p, b). The horizontal axis represents G/p and the
vertical axis is the the range of score(G, p, b) as b varies

This essentially means that, once p exceeds a certain fraction of G, the bounds matter less and

less. The reason for this is unclear to me. Perhaps it is because the decrease of prices becomes so

irrelevant that these strategies fail to make a difference.

4 Variations

The first variation I considered was a simple one. Instead of the price at a station decreasing by an

additional $n if he has gone there for the last n weeks, the price at that station will not decrease at

all and instead increase by $n, but all other rules stay the same. However, even in this new cruel

world where companies will push our mathematician until he breaks, the patterns observed with the

original case still held.

I was a bit more ambitious afterwards and generalized this process. A gas station game f can

be defined by three functions: fpicked, fnotPicked, and fnotInBound. At the end of the week, fPicked

considers the price at the station that was picked as well as the streak there and returns what the the

new price there will be. In the example we considered primarily, fPicked(p, s) = p− (s+1) and in the

variation, fPicked(p, s) = p+ s. fnotPicked takes in the same information but is applied to all stations

that weren’t picked. In both examples, fnotPicked(p, s) = p − 1. The final function, fnotInBound is

applied if the outputs of the previous functions are not in [p, 2p]. It takes in the new price and the

cost of gas and outputs the adjusted price. In our two examples, fnotInBound(x, g) = 2x if x < g or

x if x > 2g because we have only cared if the price is too small.

The process for picking a gas stations is slightly different:

1. Consider what the price would be next week for each of the stations he knows if he were to

4

pick it this week.

2. Determine all stations such that fnotInBound (if applied) does not increase the price there.

Figure out the one of those that is the cheapest this week.

3. If the price at this station is ≤ bp, the product of our bound and the cost of gas, pick it.

4. If the price is > bp, search a random unseen gas station.

5. If the price is > bp but he has viewed all the gas stations already, pick the cheapest station.

6. If everything we’ve seen doubles, pick a new station.

Unfortunately, it doesn’t appear that the patterns discovered earlier hold more generally, but it would

be interesting to determine when they do. Alas, that is research for another day.

5 Some Code

Some of the not very nice source code is available on my Github here: https://github.com/

sflorin123/Sam-Florin-SPARC-Code

5

https://github.com/sflorin123/Sam-Florin-SPARC-Code
https://github.com/sflorin123/Sam-Florin-SPARC-Code

	The Setup
	The Strategy
	Results
	Our Favorite Gas Cost
	Shifting Best Bounds
	Ranges

	Variations
	Some Code

