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Theorem 3.1.7. If ` and m are two distinct, nonparallel lines, then there exists exactly

one point P such that P lies on both ` and m.

Proof. (Selena Emerson) Let ` and m be two distinct, nonparallel lines. By definition of

nonparallel there exists at least one point, P , that lies on both ` and m. Suppose there

exists a different point, Q, be on both ` and m. By Axiom 3.1.3, there exists exactly one

line on which the two distinct points lie. Since P and Q are on both ` and m, then ` and m

are the same line. But ` and m are defined as being distinct lines which is a contradiction.

Thus, there exists exactly one point P such that P lies on both ` and m.
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Problem 3.2.3. Show that the taxicab metric defined in Example 3.2.11 is a metric(i.e.,

verify that the function ρ satisfies the three conditions in the definition of metric on page

339).

Proof. (Brianna Hillman) We want to show that the taxicab metric is a metric. To show

this, we need to show D(P,Q) = D(Q,P ) for every P and Q, D(P,Q) ≥ 0 for every P and

Q, and that D(P,Q) = 0 if and only if P = Q. Let P = (x1, y1) and Q = (x2, y2). Take

P,Q ∈ R2. Then we have that ρ((x1, y1), (x2, y2)) = ρ((x2, y2), (x1, y1))

⇒| x2 − x1 | + | y2 − y1 |=| x1 − x2 | + | y1 − y2 |.

We know that this is equal because of the properties of the absolute values. Thus, the first

condition of a metric is satisfied. Now, take a P , Q ∈ R2. If P = Q, then

ρ((x1, y1), (x1, y1)) =| x1 − x1 | + | y1 − y1 |= 0. But, if P 6= Q, then

PQ =| x2 − x1 | + | y2 − y1 |≥ 0 . Thus, ρ((x1, y1), (x2, y2)) =| x2 − x1 | + | y2 − y1 |≥ 0.

Therefore, the second condition of a metric is satisfied. Next we will prove the third condition.

(⇒) Suppose ρ(P,Q) = 0. Then, | x2−x1 | + | y2−y1 |= 0. So | x2−x1 |= 0 and | y2−y1 |= 0.
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Therefore, x2 = x1 and y2 = y1 or P = Q. (⇐) Now, suppose P = Q. So, P = Q = (x1, y1).

Then, D(P,Q) = ρ((x1, y1), (x1, y1))

⇒=| x1 − x1 | + | y1 − y1 |

⇒= 0 + 0

⇒= 0.

Therefore, the third condition of a metric is satisfied and the taxicab metric is a metric.

Problem 3.2.7. Find all point (x, y) in R2 such that ρ((0, 0), (x, y)) = 1, where ρ is the

taxi cab metric. Draw a sketch in the Cartesian plane. (This shape might be called a ”circle”

in the taxicab metric.)

Proof. (Victoria Krohn)

ρ((0, 0), (x, y)) = |x− 0|+ |y − 0| = 1

(x, y) = (1, 0) ρ((0, 0), (1, 0)) = |1− 0|+ |0− 0| = 1

(x, y) = (0, 1) ρ((0, 0), (0, 1)) = |0− 0|+ |1− 0| = 1

(x, y) = (−1, 0) ρ((0, 0), (−1, 0)) = |(−1)− 0|+ |0− 0| = 1
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(x, y) = (0,−1) ρ((0, 0), (0,−1)) = |0− 0|+ |(−1)− 0| = 1
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Problem 3.2.21. Let A and B be two distinct points. Prove that AB = BA.

Proof. (Brianna Hillman) Assume A and B are distinct points. Note that

AB = {A,B} ∪ {P | A ? P ? B} and BA = {B,A} ∪ {P | B ? P ? A}. Let x ∈ AB.

So x ∈ {A,B} ∪ {P | A ? P ? B}

⇒ x ∈ {A,B} or x ∈ {P | A ? P ? B}

In the case where x = A or x = B, then x ∈ BA. In the case where x 6= A and x 6= B,

x is in between A and B. Therefore, Ax + xB = AB by the definition of between. Since

AB = Ax+ xB, then we have that

⇒ AB = xB + Ax
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⇒ AB = Bx+ xA by Theorem 3.2.7

Since AB = Bx + xA, then x is between B and A and hence, AB ⊆ BA. Similarly, if we take

an x ∈ BA, we conclude that BA = Ax+ xB and x is between A and B. Thus, BA ⊆ AB.

Therefore, AB = BA.

Theorem 3.3.12. (Pasch’s Axiom) Let 4ABC be a triangle and let l be a line such that

none of A, B, and C lies on l. If l intersects AB, then l also intersects BC or AC.

Proof. (Katelynn Gordon) Let points A, B, and C form a triangle 4ABC and let l be a

line that does not go through a vertex of 4ABC. Then l has to go in and come out of the

triangle. Then there are three options: C ∈ l, C ∈ H1, or C ∈ H2. If C ∈ H1, then since B

∈ H2, BC ∩ l 6= ∅ (3.3.4). Or if C ∈ H2, then since A ∈ H1 AC ∩ l 6= ∅. In either case, l

crosses AC or BC.

Problem 3.3.3. Let l be a line and let H be one of the half-planes bounded by l. Prove

that H ∪ l is a convex set.

Proof. (Victoria Krohn) Let l be a line and H be a half-plane bounded by l. We need to

show that that H ∪ l. Let points A,B exist such that they construct AB. We consider 3
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cases, when AB ∪H, when AB ∪ l and when A∪ l and B ∪H. When AB ∪H by the Plane

Separation Postulate AB is in H ∪ l. When AB ∪ l by the Incidence Postulate they are in

H ∪ l. Let A ∈ l and B ∈ H so
−→
AB ∈ H by the Ray Theorem, therefore H ∪ l. Thus H ∪ l

is convex.

Problem 3.3.5. Suppose 4ABC is a triangle and l is a line such that none of the vertices

A,B, or C lies on l. Prove that l cannot intersect all three sides of 4ABC. Is it possible

for a line to intersect all three sides of a triangle?

Proof. (Victoria Krohn) Assume line l intersects a side of a triangle 4ABC. Without loss

of generality, l intersects with side AB. This creates 2 half-planes, H1, H2 with A ∈ H1 and

B ∈ H2. By Pasch’s Axiom, l must exit 4ABC through another side. Thus C ∈ H1 or

C ∈ H2. Therefore, l cannot cross all 3 sides of the triangle.

Problem 3.5.1. Prove: If l ⊥ m, then l and m contain rays that make four different right

angles.

Proof. Victoria Krohn Let A,B,C,D,E be distinct points, such that A,B,E ∈ line l and

D,A,C ∈ line m with m ⊥ l intersecting at point A. We need to show that µ∠(BAC),
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µ∠(CAE), µ∠(DAE), and µ∠(DAB) equal 90◦. By definition of perpendicular, ∠BAC

is a right angle, thus µ∠(BAC) = 90◦. Angles ∠DAB and ∠BAC are a linear pair by

the opposite rays
−−→
AD and

−→
AC (definition of linear pair). By the Linear Pair Theorem,

µ∠(BAC)+µ∠(DAB) = 180◦. So, 90◦+µ∠(DAB) = 180◦, µ∠(DAB) = 90◦. By definition

of right angle, ∠DAB is a right angle. Similarly for angles ∠DAB and ∠DAE, and ∠DAE

and ∠CAE.

Problem 3.5.2. Prove existence and uniqueness of a perpendicular to a line at a point on

the line (Theorem 3.5.9).

Proof. (Brianna Hillman) Let ` be a line where P and Q are two distinct points on `. By the

Angle Construction Postulate, there exists a unique ray
−→
PA such that A is in one half-plane

bounded by ` and µ(∠APQ) = 90◦. Then, we can extend ray
−→
PA to a line by the Incidence

Postulate. So, there exists exactly one line
←→
PA such that P lies on

←→
PA and

←→
PA ⊥ `.

Problem 3.5.5. Restate the Vertical Angles Theorem (Theorem 3.5.13) in if-then form.

Prove the theorem.

If the angles are vertical, then they are congruent.
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Proof. (Selena Emerson) Let ∠BAC and ∠DAE be vertical angles with A being the in-

tersection of
←→
BE and

←→
CD. Then ∠BAC and ∠CAE are linear pairs, making µ∠(BAC) +

µ∠(CAE) = 180◦ by the linear pair theorem. The same is true for ∠CAE and ∠DAE.

Thus, µ∠(BAC) + µ∠(CAE) = µ∠(CAE) + µ∠(DAE) so µ∠(BAC) = µ∠(DAE). Hence,

∠BAC ∼= ∠DAE.

Problem 3.5.6. Prove the following coverse of the Vertical Angles Theorem: If A, B, C,

D, and E, are points such that A*B*C, D and E are on opposite sides of ↔ AB, and

∠DBC ∼= ∠ABE, then D, B, and E are collinear.

Proof. Katelynn Gordon BWOC Let If A, B, C, D, and E, are points such that A*B*C, D

and E are on opposite sides of↔ AB, and ∠DBC ∼= ∠ABE. Then without loss of generality

let
−−→
EB be between ∠ABF . Then ∠DBC ∼= ∠ABF by the Veritcal Angles Theorem. Then

µ(∠ABE) + µ(∠EBF ) should equal µ(∠DBC) by angle addition. However, we assumed

∠ABE ∼= ∠DBC from the problem. So µ(∠EBF ) would have to be 0◦ so E, B, and D

would have to be on the same line.

Theorem 3.6.5 (Isosceles Triangle Theorem). The base angles of an isosceles triangle
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are congruent.

Proof. (Brianna Hillman) Let 4ABC be a triangle such that AB ∼= AC. We must prove

that ∠ABC ∼= ∠ACB. Let D be a point in the interior of ∠BAC such that
−−→
AD is the

bisector of ∠BAC (Theorem 3.4.7). There is a point E at which the ray
−−→
AD intersects the

segment BC (Crossbar Theorem). Then4BAE ∼= 4CAE by SAS and so ∠ABE ∼= ∠ACE.

Thus ∠ABC ∼= ∠ACB.

Problem 3.7.1. Check that the trivial geometry containing just one point and no lines

satisfies all the postulates for neutral geometry except the Existence Postulate. Which

parallel postulate is satisfied by this geometry?

Proof. (Brianna Hillman) The Ruler Postulate and Incidence Postulate are vacuously true

because there is only one point in trivial geometry. The Plane Separation Postulate is

vacuously true because there are no lines in trivial geometry. The Protractor Postulate is

vacuously true because there are no lines or rays to make angles. Finally, the Side-Angle-

Side Postulate is vacuously true as well because there are no segments in trivial geometry

to make triangles. None of the parallel postulates are satisfied in trivial geometry because
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there is only one point.

Problem 4.2.1. Prove the Converse to the Isosceles Triangle Theorem (Theorem 4.2.2).

Proof. (Brianna Hillman) Let 4ABC be a triangle such that ∠ABC ∼= ∠ACB. We want

to show that AB ∼= AC. By the Existence and Uniqueness of Perpendiculars, we can drop

a perpendicular from A to some point P on BC. Then, since ∠ABC ∼= ∠ACB,AP = AP ,

and ∠APB ∼= ∠APC, 4ABP ∼= 4APC by AAS. Therefore, AB ∼= AC.

Problem 4.2.4. Prove the HYpotenus-Leg Theorem

Proof. (Katelynn Gordon) Let 4ABC be a triangle such that µ(∠BAC)=90◦. Then ex-

tend
−→
AC so that CA ∼= AF . Now forming FB creates two triangles 4ABC and 4ABF .

4ABC ∼= 4ABF by SAS so FB ∼= CB.

Problem 4.2.5. Prove that it is possible to construct a congruent copy of a triangle on a

given base (Theorem 4.2.6).

Proof. (Victoria Krohn) Let 4ABC be a triangle, DE is a segment such that DE ∼= AC,

and H is a half-plane bounded by
←→
DE. We need to show 4ABC is congruent to another
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triangle contructed from
←→
DE. Let point G be in H. By the Angle Construction Postulate,

construct
−→
DG such that ∠BAC ∼= ∠GDE. By the Point Construction Postulate, let point

F lie on
−→
DG such that AB ∼= DF . Form 4DFE. By SAS, 4ABC ∼= 4DFE because

AB ∼= DF , ∠BAC ∼= ∠GDE, and DE ∼= AC.

Problem 4.3.7. Prove that the shortest distance from a point to a line is measured along

the perpendicular (Theorem 4.3.4)

Proof. (Katelynn Gordon) Let there be a line ` such that F , R ∈ ` and F 6= R. Then let

P be a point such that P /∈ `. Then we can drop a perpendicular from P to ` that goes

through F . We can also connect P to R in order to form 4 PFR. We know that ∠ PFR

is a right angle since it is formed by a perpendicular. We then know that 4 PFR is a right

triangle and therefore we know that the hypotenuse which is across from the right angle of

a right triangle in the longest side of the triangle by the Scalene Inequality. Therefore, the

perpedicular is shorter than the hypotenuse of the right triangle.

Problem 4.3.8. Prove the Pointwise Characterization of Angle Bisectors (Theorem 4.3.8)

Let A and B be distinct points. A point P lies on the perpendicular bisector of AB if and
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only if PA = PB.

Proof. (Victoria Krohn)⇐ Assume d(P,
←→
AB) = d(P

←→
AC). By the Existence and Uniqueness

of Perpendiculars, drop a perpendicular from P to point N on
−→
AC and to point M on

−→
AB.

By the definiton of perpendicular, µ(∠PNA) = 90◦ and µ(∠PMA) = 90◦. By definiton

of congruce, ∠PNA = ∠PMA. By the Hypotenuse - Leg Theorm, 4ANP ∼= 4AMP

because AP ∼= AP , ∠PNA = ∠PMA, and NP ∼= MP (by the assumptions). By definiton

of congruent triangles, ∠PAN ∼= ∠PAM , therefore
−→
AP is an angle bisector of ∠CAB.

⇒ Assume
−→
AP is an angle bisector of ∠CAB. Let N be a point on

−→
AC and M be a

point on
−→
AB. By the Existence and Uniqueness of Perpendiculars, drop a perpendicular

from P to N and from P to M . By the definiton of perpendicular, µ(∠PNA) = 90◦ and

µ(∠PMA) = 90◦. By definiton of congruce, ∠PNA ∼= ∠PMA. By Angle-Angle-Side,

4ANP ∼= 4AMP because AP ∼= AP , µ(∠PAN) = µ(∠PAM) (by definition of Angle

Bisectors) so ∠PAN ∼= ∠PAM (by defintion of congruence), and ∠PNA ∼= ∠PMA. Thus,

by definiton of congruent triangles, NP ∼= MP .

Problem 4.4.3. Prove Corollary 4.4.8 If l, m and n are three lines such that m ⊥ l and
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n ⊥ n, then either m = n or m ‖ n.

Proof. (Katelynn Gordon) Assume m 6= n. Then we want to show that m ‖ n. Then know

that if l ⊥ m and l ⊥ n then l is a transversal. Then by the definition of perpendicular, we

know that l crosses m and n at 90◦. We can then see that have corresponding congruent

angles so it follows that m ‖ n.

Problem 4.6.6. Prove that a quadrilateral is convex if the diagonals have a point in com-

mon (the remaining part of Thm 4.6.8).

Proof. (Connor Lowman) Let �ABCD be a quadrilateral and let diagonals
−→
AC ∩

−−→
BD at

interior point E. So D ∗E ∗B and A ∗E ∗C. Then E is in the intersection of the half-plane

formed by
←→
DC and A, and the half-plane formed by

←→
AD and C. Thus E is in the interior of

∠ADC. By the Ray Theorem, E and B are on the same side of
←→
DC. Therefore, B is in the

interior of ∠ADC.

Problem 4.6.10. Let �ABCD be a convex quadrilateral. Prove that each of the following

conditions implies that �ABCD is a parallelogram.
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a. 4ABC ∼= 4CDA

Proof. (Connor Lowman) Let �ABCD be a convex quadrilateral such that 4ABC ∼=

4CDA. Notice that
←→
AC is a transversal cutting through

←→
AB and

←→
DC. Since 4ABC ∼=

4CDA, ∠ACB ∼= ∠DAC and ∠DCA ∼= ∠BAC. Thus, by Alternate Interior Angles Theo-

rem,
←→
AB‖

←→
DC. Notice

←→
AC is also a transversal cutting through

←→
AD and

←→
BC. Again, angles

∠ACB,∠DAC and ∠DCA,∠BAC are alternate interior angles. Similarly, by Alternate

Interior Angles Theorem,
←→
AD‖

←→
BC. Therefore, �ABCD is a parallelogram.

b. AB = CD and BC = AD.

Proof. (Connor Lowman) Let �ABCD be a convex quadrilateral such that AB = CD and

BC = AD. Consider diagonal AC. Then by SSS, 4ABC ∼= 4CDA. Therefore, by proof

from part a, �ABCD is a parallelogram.

d. The diagonals AC and BD share a common midpoint.

Proof. (Kathryn Bragwell) Let �ABCD be a convex quadrilateral. Let E be a common

midpoint AC and BD share. Thus AE = EC and DE = CE. Notice ∠BEC and ∠AED
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are vertical angles thus ∠BEC ∼= ∠AED also ∠CED ∼= ∠BED because they are vertical

angles also. Thus 4ABE ∼= 4CDE by ASA and 4CBE ∼= 4AED by ASA. Since AC is

a transversal of AB and DC, and ∠BAD ∼= ∠ECD then AB ‖ DC. Similarly BC ‖ AD.

End material for Exam 1 / Begin material for Exam 2.

Problem 5.1.5. Properties of 60-60-60 and 30-60-90 triangles. An equilateral triangle is

one in which all 3 sides have equal lengths. (a) Prove that a Euclidean triangles is equilateral

if and only if each of its angles measures 60◦.

Proof. ⇐= Let 4ABC be a triangle such that all angles are the same. By the Angle Sum

Theorem ∠ABC + ∠BCA + ∠CAB = 180, 180/3 = 60 thus, all 3 angles are 60◦. By the

Converse to the Isosceles Triangle Theorem, µ(∠CAB) = µ(∠BCA) so AB ∼= BC and

µ(∠ABC) = µ(∠CAB) so BC ∼= AC. Therefore, AB ∼= BC ∼= AC. =⇒ Assume all

sides of 4ABC are congruent. By the Isosceles Triangle Theorem, base angles µ(∠CAB) =
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µ(∠BCA), because sides AB ∼= BC and base angles µ(∠ABC) = µ(∠CAB) because BC ∼=

AC. Therefore, µ(∠ABC) = µ(∠CAB) = µ(∠BCA).

(b)Prove that there is an equilateral triangle in Euclidean geometry.

Proof. Let A,B,C,D be 4 distinct points such that AB creates 2 half planes and that

point D is in one of the half planes, to construct
−−→
AD such that µ(∠DAB) = 60◦ (by the

Angle Construction Postulate). Let point C lie on
−−→
AD such that A ∗ C ∗ D∗ and that

AC ∼= AB (by the Point Construction Postulate). Let CB form to construct 4ABC. By

the Isosceles Triangle Theorem, base angles µ(∠ACB) = µ(∠ABC) because AC ∼= AB.

By the Angle Sum Postulate, ∠ABC + ∠ACB + ∠CAB = 180, µ(∠ACB) = µ(∠ABC) so

2(∠ABC)+∠CAB = 180 Thus, ∠CAB = 180−2(∠ABC), so 180/3 = 60◦ and µ(∠ABC) =

µ(∠CAB) = µ(∠ACB). By part a, all sides are equal thus 4ABC is an equilateral triangle.

(c) Split an equilateral triangle at the midpoint of one side to prove that there is a triangle

whose angles measure 30◦, 60◦, and 90◦.

Proof. Let 4ABC be an equilateral triangle and let point D be the midpoint
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Problem 5.3.2. Prove the SAS Similarity Criterion (Theorem 5.3.3).

Proof. (Katelynn Gordon) Let 4ABC with C ′ ∈ AC and 4DEF be triangles such that

AC ′ ∼= DF , ∠CAB ∼= ∠FDE, and AB/AC=DE/DF. Now by the Incidence Postulate, form

a parallel line m to CB through point C ′. Then m crosses AB at point B′. Similary form

a parallel line to m called l through point A. Then ∠BAC ∼= ∠BAC since it is the same

angle, ∠AB′C ∼= ∠ABC by properties of parallel lines, and ∠ACB ∼= ∠AC ′B′ by parallel

line properties. So 4ABC ∼= 4AB′C ′ by since all of their angles are congruent. By the Par-

allel Projection Postulate AB’/AB=AC’/AC. Then AB’AC/AC=ABAC’/AC. It follows that

AB’/AC’=ABAC’/AC. Then AB’/AC’=AB/AC. From the assumption, AB/AC=DE/DF=AB’/AC’.

Then AB’/AC=DE/DF, and AB’=DE. so 4AB′C ′ ∼= 4DEF by SAS and then 4ABC ∼

4DEF .

Problem 5.4.3. Prove the converse to the Pythagorean Theorem (Theorem 5.4.5)

Proof. (Kathryn Bragwell) Let 4ABC be triangle such that a2+b2=c2. By the angle con-

struction postulate let ∠DEF=90◦. By the ruler postulate let EG=AC. Since AC is across

from the angle with the vertex B it is b according to notation. Thus EG=AC=b. Now, by

17



the ruler postulate let EA=CB. Since CB is across from the angle with the vertex A it is

a. Thus EA=CB=a. Thus we have a right triangle 4HEG. Let GH=d. So 4HEG has

a relationship of a2+b2=d2 by the Pythagorean Theorem. Since a2+b2=c2 and a2+b2=d2,

then c2=d2,
√
c=
√
d, c=d. Thus 4ABC ∼= 4HEG by SSS. Hence if 4ABC is a triangle

such that a2+b2=c2, then ∠BCA is a right angle.

Problem 7.2.5. Let �ABCD be Euclidean parallelogram. Choose one side as a base and

define the corresponding height for the parallelogram. Prove that the area of the parallelo-

gram is the length of the base times the height.

Proof. (Kathryn Bragwell) Let �ABCD be a parallelogram. Drop a perpendicular from DC

to AB at D. Let E be the foot of the perpendicular. Drop another perpendicular from AB

to DC at B. Let F be the foot of the perpendicular. Thus there exist a right triangle4DEA

and a right triangle 4CFB. Since DE and FB is perpendicular to DF and BF , �BEFD

is a rectangle by the definition of rectangles. By theorem 7.2.3 α4DEA = 1/2(BE)(ED)

and α4CFB = 1/2(CF)(FB). By the Euclidean Area Postulate α�BEFD=(EB)(FB).

Since 4DEA, αCFB, and �BEFD exist within �ABCD we can add their areas. Thus

18



α�ABCD=1/2(AE)(ED)+1/2(CF)(FB)+(EB)(FB). Since �BEFD is a rectangle it is also

a parallelogram , therefore by properties of parallelograms we know FB ∼= EB. Thus

α�ABCD =1/2(AE)(FB)+1/2(CF)(FB)+(EB)(FB). Likewise, since �ABCE is a parallel-

ogram AD ∼= BC. Now consider 4AED and 4CFB, ED ∼= FB, ∠AEB ∼= ∠BFC, and

AD ∼= BC therefore they are congruent by the hypotenuse leg theorem. Hence AE ∼= FC.

Thus α�ABCD = 1/2 (AE)(FB)+1/2(AE)(FB)+(EB)(FB)=(AB)(FB)+(EB)(FB)=(FB)(AB+EB).

Since FB is one of the perpendiculars we originally droped it is the height of �ABCD by

the definition of height. AE+EB is the length of AB this is the base by the definition of

base. Thus the area of �ABCD is base times height,
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