Chapter 1

Real number

1.1 Ordered Fields

The property of ordered fields

1.1.1 Theorem

1. A1. $\forall x, y \in \mathbb{R}$ and if $x=w$ and $y=z$, then $x+y=w+z$.
2. A2. $\forall x, y \in \mathbb{R}, x+y=y+x$.
3. A3. $\forall x, y, z \in \mathbb{R}, x+(y+z)=(x+y)+z$.
4. A4. \exists unique real number $0 \ni x+0=x$ for all $x \in \mathbb{R}$.

1.1.2 Exercise

Q3. Let $x, y, z \in \mathbb{R}$. Prove the following. Q3(a) $-(-x)=x$:
by M1:
Let $x=-1, y=-x$, then

$$
\begin{align*}
x \cdot y & =(-1)(-x) \\
& =(-1 \cdot-1) x \leftarrow(\text { from }, M 3) \\
& =x \tag{1.1}
\end{align*}
$$

(b) $(-x) \cdot y=-(x y)$ and $(-x) \cdot(-y)=x y$: by M3:
Let $x=-1, y=x, z=y$ then

$$
\begin{align*}
(-x) \cdot y & =(-1 \cdot x) \cdot y \\
& =-(x, y) \leftarrow \text { from M3 } \tag{1.2}
\end{align*}
$$

To prove second part by M3:
Let $x=-1, y=-x, z=-y$ then

$$
\begin{align*}
(-x) \cdot(-y) & =(-1 \cdot x)(-1 \cdot y) \tag{1.3}\\
& =(-1) \cdot x \cdot(-1) y \\
& =x y \leftarrow \text { from M3 } \tag{1.4}
\end{align*}
$$

(e) if $x \neq 0$, then $x^{2}>0$
consider $x>0$:
Let $x=2$:

$$
\begin{align*}
x^{2} & =(2)^{2} \\
& =4 \tag{1.5}
\end{align*}
$$

consider $x<0$:
Let $x=-2$:

$$
\begin{align*}
x^{2} & =(-2)^{2} \\
& =4 \tag{1.6}
\end{align*}
$$

