Workshop 2

Philip Mak

June 13, 2016

1 PROBLEM 1.3.10

The Cut Property of the real numbers is the following. If A and B are nonmempty, disjoint sets with $A \cup B = \mathbb{R}$ and a < b for all $a \in A$ and $b \in B$, then there exists $c \in \mathbb{R}$ such that $x \le c$ whenever $x \in A$ and $x \ge c$ whenever $x \in B$.

(a) Use the Axiom of Completeness to prove the Cut Property

Proof: Suppose sets A and B are nonempty, disjoint sets with $A \cup B = \mathbb{R}$ and a < b for all $a \in A$ and $b \in B$. We want to show there exists $c \in \mathbb{R}$ such that $x \le c$ whenever $x \in A$ and $x \ge c$ whenever $x \in B$.

We know $a < b \forall a \in A$ and $\forall b \in B$. So, the set *B* is the set of upper bounds of set *A*. Therefore, *A* is bounded above and by the Axiom of Completeness, *A* contains a supremum (least upper bound) the we call *s*. Since $A \cup B = \mathbb{R}$ and $A \cap B = \emptyset$, either $s \in A$ and $s \notin B$ or $s \in B$ and $s \notin A$. Case 1: $s \in A$ and $s \notin B$

 $s \ge a \forall a \in A \text{ and } s < b \forall b \in B$ Case 2: $s \notin A \text{ and } s \in B$ $s \le b \forall b \in B \text{ and } s > a \forall a \in A$ Therefore, $a \le s \le b \forall a \in A \forall b \in B$ and the Cut Property holds by the Axiom of Completeness.

(b) Show that the implication goes the other way; that is, assume \mathbb{R} possesses the Cut Property and let *E* be a nonempty set that is bounded above. Prove sup *E* exists.

Assume that \mathbb{R} possesses the Cut Property and let *E* be a nonempty set that is bounded above. We want to show that sup(*E*) exists. To do this, we have to show the two properties of a supremum.

(i) s is an upper bound for A

(ii) if *b* is any upper bound for *A*, then $s \le b$.

Since *E* is bounded above and \mathbb{R} has the Cut Property, then there exists a set *F* such that $E \cup F = \mathbb{R}$ and $E \cap F = \emptyset$. Because *E* is bounded above and $E \cup F = \mathbb{R}$, it implies that $e < f \forall e \in E \forall f \in F$. So *F* is the set of upper bounds for *E*. Also by the definition of the Cut Property, we have some $g \in \mathbb{R}$ such that $e \le g \le f \forall e \in E \forall f \in F$. Since $g \le f$, $g \in F$ and it is the smallest element in *F*. Therefore, *g* is the least upper bound.

(c) The punchline of parts (a) and (b) is that the cut property could be used in place of the Axiom f Completeness as the fundamental axiom that distinguishes the real numbers from the rational numbers. To drive this point home, give a concrete showing that the Cut Property is not a valid statement when \mathbb{R} is replaced by \mathbb{Q} .

The easiest example of this would be to let $A = a \in \mathbb{Q}$: $a^2 < 2$ and $B = b \in \mathbb{Q}$: $b^2 > 2$. From this, it is easy to see that $A \cap B = \emptyset$ and $A \cup B = \mathbb{Q}$. To find the "Cut Value" *c*, some simple arithmetic will show that $c^2 = 2$. We want to show that $a \le c \le b \forall a \in A \forall b \in B$. However, the value of *c* to solve this does not exist in \mathbb{Q} . Therefore, the Cut Property does not apply to the rational numbers.