MY FAVORITE THEOREM

Princess Sy

May 12,2016

PYTHAGOREAN THEOREM

It states that,the square of a plus the square of b is equal to the square of c.

$$
\begin{equation*}
a^{2}+b^{2}=c^{2} \tag{1}
\end{equation*}
$$

PROOF USING ALGEBRA

We can show that $a^{2}+b^{2}=c^{2}$ using Algebra.
Take a look at the diagram below.

1 Area of Whole square

Each side of the square has a length of $a+b$

$$
\begin{equation*}
A=(a+b)(a+b) \tag{2}
\end{equation*}
$$

2 Area of the Pieces

2.1 First, the smaller(tilted) square has an Area

$$
\begin{equation*}
A=c^{2} \tag{3}
\end{equation*}
$$

2.2 And there are four triangle,each one of them has an Area

$$
\begin{equation*}
A=\frac{1}{2} a b \tag{4}
\end{equation*}
$$

So all four of them combined

$$
\begin{equation*}
A=4\left(\frac{1}{2} a b\right)=2 a b \tag{5}
\end{equation*}
$$

2.3 Adding up the Area of the tilted square and the Area of the 4 Triangles

$$
\begin{equation*}
A=c^{2}+2 a b \tag{6}
\end{equation*}
$$

3 Conclusion

Let the Area of the Whole Square be Equal to the Area of the Pieces

$$
\begin{align*}
(a+b)(a+b) & =c^{2}+2 a b \tag{7}\\
a^{2}+2 a b+b^{2} & =c^{2}+2 a b \tag{8}\\
a^{2}+2 a b+b^{2}-2 a b & =c^{2}+2 a b-2 a b \tag{9}\\
a^{2}+b^{2} & =c^{2} \tag{10}
\end{align*}
$$

NOW WE SEE HOW PYTHAGOREAN THEOREM WORKS

