Math 333 Weekly Homework 1

Juliet Traini

September 10, 2019

Exercise 1

Assume $n, a \in \mathbb{Z}$. If a divides n^2 , then a divides n.

Proof. Assume $n, a \in \mathbb{Z}$. We can prove our prompt false using a counterexample. First, using the definition of divisibility, we can rewrite the prompt as "If $n^2 = ak$, then n = ak." Let's assume n = 9 and a = 27. When we plug these values into our first equation we get

$$(9)^2 = 27k, k \in \mathbb{Z}.$$

We can further solve this equation to reveal

$$(9)^2 = 27k \Longrightarrow 81 = 27k \tag{1}$$

$$=>k=3.$$

However, when we plug these values into our second equation we get

$$9 = 27k, k \in \mathbb{Z}.$$

We can further solve this equation to reveal

$$9 = 27k \Longrightarrow k = \frac{1}{3}.$$

Under these conditions, we prove the prompt false by demonstrating that both of our k values are not integers which shows that when a divides n^2 , a does not necessarily divide n.

Exercise 2

If n is an even integer, then n^2 is an even integer.

Proof. We wish to prove our prompt to be true. By the definition of even numbers and divisibility, we can write n to be

$$n = 2k, k \in \mathbb{Z}.$$

Likewise, we can rewrite n^2 to be

$$n^2 = (2k)^2, k \in \mathbb{Z}.$$

Multiplying and rewriting n^2 we see

$$n^{2} = (2k)^{2} \Longrightarrow n^{2} = 4k^{2}$$
(3)

$$=> n^2 = 2(2k^2).$$
 (4)

We can then set $2k^2 = p, p \in \mathbb{Z}$ and rewrite the equation to look like

$$n^2 = 2(p).$$

Thus, by the definition of even numbers and divisibility, we prove that if n is an even integer, then n^2 is an even integer.