Math 333 Weekly Homework 1

Juliet Traini

September 10, 2019

Exercise 1

Assume $n, a \in \mathbb{Z}$. If a divides n^{2}, then a divides n.

Proof. Assume $n, a \in \mathbb{Z}$. We can prove our prompt false using a counterexample. First, using the definition of divisibility, we can rewrite the prompt as "If $n^{2}=a k$, then $n=a k$." Let's assume $n=9$ and $a=27$. When we plug these values into our first equation we get

$$
(9)^{2}=27 k, k \in \mathbb{Z}
$$

We can further solve this equation to reveal

$$
\begin{align*}
(9)^{2}=27 k & =>81=27 k \tag{1}\\
& =>k=3 . \tag{2}
\end{align*}
$$

However, when we plug these values into our second equation we get

$$
9=27 k, k \in \mathbb{Z}
$$

We can further solve this equation to reveal

$$
9=27 k \Rightarrow k=\frac{1}{3} .
$$

Under these conditions, we prove the prompt false by demonstrating that both of our k values are not integers which shows that when a divides n^{2}, a does not necessarily divide n.

Exercise 2

If n is an even integer, then n^{2} is an even integer.

Proof. We wish to prove our prompt to be true. By the definition of even numbers and divisibility, we can write n to be

$$
n=2 k, k \in \mathbb{Z}
$$

Likewise, we can rewrite n^{2} to be

$$
n^{2}=(2 k)^{2}, k \in \mathbb{Z}
$$

Multiplying and rewriting n^{2} we see

$$
\begin{align*}
n^{2}=(2 k)^{2} & =>n^{2}=4 k^{2} \tag{3}\\
& =>n^{2}=2\left(2 k^{2}\right) . \tag{4}
\end{align*}
$$

We can then set $2 k^{2}=p, p \in \mathbb{Z}$ and rewrite the equation to look like

$$
n^{2}=2(p)
$$

Thus, by the definition of even numbers and divisibility, we prove that if n is an even integer, then n^{2} is an even integer.

