Introduction to Cartesian Coordinates in Geometry

Andrew Wu

1 Introduction

The technique of coordinates in geometry is a very valuable one. Coordinates are applicable to many problems in geometry. The basic method is to put the diagram on a coordinate plane and use the distance formula, midpoint formula, systems of equations, shoelace formula etc. and bash the problem. While some of these problems may have a simpler synthetic solution, they are all approachable with the method of coordinates.

2 Examples

1. The diagram shows 28 lattice points, each one unit from its nearest neighbors. Segment $A B$ meets segment $C D$ at E. Find the length of segment $A E$. (AMC 10)

Solution: While this problem can also be solved through similar triangles, coordinates are the most obvious approach to the problem (we are already given a coordinate system). Let point A be $(0,3)$, point B be $(6,0)$, point C be $(4,2)$, and point D be $(2,0)$ (Note that the bottom left point is $(0,0))$. To find the coordinates of point E, we need to find the equations of lines $A B$ and $D C$. We find that line $A B$ is defined by the equation $y=\left(\frac{-1}{2}\right) x+3$ and that line $D C$ is defined by the equation $y=x-2$. We can solve this system of equations to find the intersection, point E ! We substitute $x-2$ in for y in the first equation, and solving, we find that the intersection point is $E\left(\frac{10}{3}, \frac{4}{3}\right)$. Using the distance formula, we find that $A E=5 \sqrt{5} / 3$.
2. Consider a rectangle $A B C D$. Let M be a point on the segment $A B$ such that $A M=8$ and $M B=12$. Let N be a point on the segment $B C$ such that $B N=4$ and $N C=8$. Let P be a point on the segment $C D$ such that $C P=8$ and $P D=12$. Let Q be a point on the segment $A D$ such that $D Q=4$ and $Q A=8$. Let O be the point of intersection of $M P$ and $N Q$. Find the area of the quadrilateral $M O N B$. (Mathcounts)

Solution: Let $B=(0,0), A=(0,20), D=(12,20)$, and $C=(12,0)$. Therefore, we can label all the other points: $M=(0,12), Q=(8,20), P=(12,8)$ and $N=(4,0)$. To find the coordinates of point O, we again can set up two equations and solve a system. The equation of $M P$ is $y=\frac{-1}{3} x+12$ and the equation of $Q N$ is $y=5 x-20$. Since point O satisfies both these equations, we solve the system to get $O=(6,10)$ (Note that we could have used symmetry to get this too). Now we can find the area of $M O N B$ by using either the Shoelace Formula, or by drawing a segment parallel to $B C$ from O to $A B$ and drawing a segment parallel to $A B$ from N to the other segment, creating two triangles and a rectangle. Either way, our answer is 56 .

3 Exercises

(Note: All exercises are meant to be solved through the use of cartesian coordinates)

1. The legs of right triangle $A B C$ have lengths 10 and 24 , with $A B=10$ and $B C=24$. If $A D$ and $C E$ are medians that intersect at point F, find $[F B C]$. (note: $[F B C]$ denotes the area of $[F B C]$)
2. Point B lies on line segment $\overline{A C}$ with $A B=16$ and $B C=4$. Points D and E lie on the same side of line $A C$ forming equilateral triangles $\triangle A B D$ and $\triangle B C E$. Let M be the midpoint of $\overline{A E}$, and N be the midpoint of $\overline{C D}$. The area of $\triangle B M N$ is x. Find x^{2}. (AIME)

4 Solutions

1. Let $B=(0,0), A=(0,10)$, and $C=(24,0)$. Thus, $E=(0,5)$ and $D=$ $(12,0)$. We can set up a system of equations to find that $F=\left(8, \frac{10}{3}\right)$. We can either drop an altitude of length $\frac{10}{3}$ to $B C$, or use Shoelace. Either way, $[F B C]=40$.
2. Set point A as $(0,0)$, point B as $(16,0)$, and point C as $(20,0)$. Using $30-60-90$ and equilateral triangle calculations, point D is $(8,8 \sqrt{3})$ and point E is $(18,2 \sqrt{3})$. Finding the midpoint of $A E$ and $C D$ gives us M at point $(9, \sqrt{3})$ and N at $(14,4 \sqrt{3})$. Finally, we can use the Pythagorean Theorem to find that $B M=M N=B N=2 \sqrt{13}$. Using the equilateral triangle formula gives us $x=13 \sqrt{3}$, so $x^{2}=507$.
