Name: Arpit Gupta AG3418

COMS 4772 Homework Set 4

(1) You may use the fact that expectation is a linear operator.
(a) For a random variable X, let £ X denote its expected value. Show that

E((X-EX)X-EX)") =E(XX") - EX(EX)".

The quantity on the left hand side is the variance-covariance matrix for X, which we will call

V(X).

E(XX"—(EX)X" - X(EX)" + EX(EX)")
= E(XX" -2(EX)X" + EX(EX)")
=E(XX") - E(2EX)X"+ EX(EX)")
=FE(XX") - E(EX)X")+E(EX(EX)")
=E(XX")-2(EX)E (X") + (EX(EX)T
= E(XX") - 2(EX)(EX)" + (EX(EX)"
=E(XX") - EX (EX)"
= RHS

HenceProved.
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(b) Show that, for any (appropriately sized) matrix A we have
V(AX) = A(V(X))AT.

V(AX) = E(AX(AX)T) — E(AX)(E(AX))"
= V(AX) = B(AXXTAT) - ( X)(B(AX))"
= V(AX) = AB(XX)AT — AB(X)(E(X)T AT
— V(AX) = A(E(XXT) - E(X)(E(X)T)AT
— V(AX) = A(V(X))AT

Hence Proved .

(c) Show that
E(||X]*) = trace(V (X)) + | EX|.

trace(V (X)) + || EX|)* = trace(E(XXT) — BE(X)E(X)T) + ||EX||2

= trace(V (X)) + [|[EX|]? = trace( BE(X XT)) — trace( BE(X)E(X)T) + || EX]]?
= trace(V (X)) + [|[EX|]? = E(trace(X XT)) — trace( BE(X)E(X)T) + || EX]?
Now, trace(X XT) = X XT as X X7 is a scalar

= trace(V(X)) + |[EX]]? = E(XXT)

— trace(V(X)) + | EX|]? = B(IX|P)



(d) Solve the stochastic optimization problem
min B1X —

where X is a random vector, and the expectation is taken with respect to X. What is the
minimizer? What’s the minimum value?

Answer :
min(B|X -yl
= min(B((X —y)(X —y))")
= min(EB(XXT —2Xy" + yy")
Yy
— min(B(XXT) - 25" B(X) + yy")
y
Take gradeient of above equation and equate to zero.
V(E(XXT) = 2yTE(X)+yy") =0
— —2E(X)+2y=0
= y = E(X)
(2) Frobenius norm estimation. Suppose we want to estimate
| Al|% = trace(AT A)

of a large matrix A. One way to do this is to hit A by random vectors w, and then measure the
resulting norm.
(a) Find a sufficient conditions on a random vector w that ensures

E||Aw|* = | All%

Prove that your condition works.
Answer :

| Al|% = trace(AT A)
= ||A||% = trace((AT1A))
— ||A||% = trace(AT E(w"w)A)
where w, is a random variable with E(W) = 0, and Var(w) = 1

- HAH% = trace(ATE(wTw)A)
— || A||% = trace(E ((wA)TwA))

As trace is a linear operator,

= || Al|7 = E (trace((wA)"wA))
= [|AllE = E (trace(||Aw]]*))

Now, ||Aw|| will, be a 1X1 scalar , therefore it is same as its trace.

= || Al = E]|Aw|]



Hence Proved.
And w, mjst be a random variable with E(W) = 0, and Var(w) = 1

(b) What’s a simple example of a distribution that satisfies the condition you derived above?
White Gaussian Noise is an example of w that will satisy above condition.

(c) Explain how you can put the relationship you found to practical use to estimate ||A||% for
a large A. In particular, you must explain how to estimate ||A||% more or less accurately,
depending on the need.

Answer :

We can take Expected value of |Awl|? by choosing different w multiple times, and averaging
over the values of ||Aw||? By increasing the number of times we sample w, we can achieve higer
accuracy, as the sampling count approaches infinity, we will exactly match ||A||%

(d) Test out the idea in Matlab. Generate a random matrix A, maybe 500 x 1000. Compute its
frobenius norm using norm(A, ’fro’) command. Compare this to the result of your approach.
Are they close? Is your approach faster?

Answer :

It is faster when number of times w is less than . As the number of times I sample w is
increased, accuracy increases.

(3) Consider again the logistic regression problem. Included with this homework is the covtype dataset
(500K examples, 54 features).
Consider again the logistic regression formulation:

N
1 g
min ;1 log(1 + exp(#; 0)) + A0l

where &; = —y;z; and you can take A = 0.01 (small regularization).
Implement a stochastic gradient method for this problem.
Use the following options for step length:
(a) Pre-specified constant
(b) Decreasing with the rule a(k) o< ¢ (with some initialization)
(c) Decreasing with rule a(k) o< 55 (with some initialization)

Divide covtype into two datasets, 90% training and 10% testing. Tune each of the three previous
step size routines (i.e. adjust the constant or the constant initialization) until you are happy each
one performs reasonably well. Make a graph showing the value of the test likelthood as a function
of the iterates for each of the three strategies.

(4) (BONUS)



(a) Change the counting in the previous problem to be as a function of effective passes through
the data, rather than iterations. For example, five iterations with batch size 1 should be no
different than one iteration with batch size 5 in this metric.

(b) For the pre-specified constant step length strategy, compare test likelihood as a function of
effective passes through the data for different random batch sizes, e.g. 1, 10, and 100.

(¢) Again for pre-specified constant step length strategy, implement a growing batch size strategy,
where the size of the batch increases with iterations. Can this strategy beat the fixed batch
size strategy, with respect to effective passes through the data?



