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Problem 1

(a) Assume that output y(t) = h (a constant) in the steady state and A < 0. In the steady state,

the state variable x does not depend on time anymore, i.e., ˙x(t) = d
dtx(t) = 0. Therefore, the

state-space equations becomes:

0 = Ax+Bu (1)

h = Cx (2)

Therefore, u(t) = −A
Bx(t) = − A

CBh, which proves the required claim.

(b) With the steady state controller u(t) = − A
CBh, we can solve the state-space equations by using

Laplace transform. Indeed, we substitute u(t) = − A
CBh into the state equation and define z(t) =

x(t)− h
C , the state equation becomes:

˙z(t) = Az(t) (3)

So, by applying Laplace transform and inverse Laplace transform which is also shown as follows,
we get:

L[ ˙z(t)] = L[Az(t)]

sZ(s)− z(0) = AZ(s)

Z(s) =
z(0)

s−A

L−1[Z(s)] = L−1[
z(0)

s−A
]

z(t) = eAtz(0)

x(t)− h

C
= eAt(x(0)− h

C
)

x(t) =
h

C
(1− eAt)

.

Thus,

y(t) = Cx(t) = h(1− eAt) (4)

for t ≥ 0.
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For A < 0,

lim
t→∞

y(t) = lim
t→∞

h(1− eAt)

= h

(c) For A > 0,

lim
t→∞

y(t) = lim
t→∞

h(1− eAt) ∈ {∞,−∞, 0}

depending on whether h is negative, positive or zero, respectively.

(d) Simulation using MATLAB Simulink:

Figure 1: MATLAB Simulink Configuration for (A,B,C, h) = (−2, 1, 1, 0.5)

Figure 2: The time response plot for (A,B,C, h) = (−2, 1, 1, 0.5)

These plots confirm the correctness the results of the output y(t) in the steady state derived in part (b)
and (c).
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Figure 3: MATLAB Simulink Configuration for (A,B,C, h) = (2, 1, 1, 0.5)

Figure 4: The time response plot for (A,B,C, h) = (2, 1, 1, 0.5)

Problem 2

(a) Given the hard disk drive equations, that is,

I1θ̈1 + b(θ̇1 − θ̇2) + k(θ1 − θ2) = Mc +MD (5)

I2θ̈2 + b(θ̇2 − θ̇1) + k(θ2 − θ1) = 0 (6)

we can develop a state equation by choosing x(t) =


θ1
θ̇1
θ2
θ̇2

 as state variables, u(t) =

[
MC

MD

]
as input

variables and y = θ2 as output variable. For this choice, the state equation for this system is:
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ẋ =


θ̇1
θ̈1
θ̇2
θ̈2

 =


0 1 0 1
− k
I1
− b
I1

k
I1

b
I1

0 0 0 1
k
I2

b
I2

− k
I2
− b
I2

x +


0 0
1
I1

1
I1

0 0
0 0

u

= Ax +Bu

y =
[
0 0 1 0

]
x + 0.u

= Cx

where A =


0 1 0 1
− k
I1
− b
I1

k
I1

b
I1

0 0 0 1
k
I2

b
I2

− k
I2
− b
I2

, B =


0 0
1
I1

1
I1

0 0
0 0

, and C =
[
0 0 1 0

]
.

(b) For MD = 0, b = 0, and y =

[
θ1
θ2

]
as output variables, let u = MC as input variable. The

state-space equations become

ẋ = Ax +Bu

y = Cx

where A =


0 1 0 1
− k
I1

0 k
I1

0

0 0 0 1
k
I2

0 − k
I2

0

, B =


0
1
I1
0
0

, C =

[
1 0 0 0
0 0 1 0

]
, and u = MC . Taking Laplace

transform both sides of the state-space equations gives the transfer function as follows

H(s) =

[
H1(s)
H2(s)

]
=

[
Y1(s)
U(s)
Y2(s)
U(s)

]
= C(sI −A)−1B

=


(1/I1)s

2+k/(I1I2)
s4+(k/I1)s2

k/(I1I2)
s4+(k/I1)s2



Problem 3

Assume that the system is operating about the equilibrium point (x0,u0) = (0,0) and the variations of
f(x(t),u(t)) around the equilibrium point is sufficiently small. Then we can write x(t) = x0 + δx(t) and
u(t) = u0 + δu(t).

Recall the vector equation ẋ(t) = f(x(t),u(t)), each equation of which ẋi(t) = fi(x(t),u(t)) can be
expanded using Taylor series expansion as

d

dt
(x0i + δxi) = fi(x0 + δx(t),u0 + δu(t)) (7)

≈ fi(x0,u0) +
∂fi
∂x

∣∣∣∣
x=x0

δx +
∂fi
∂u

∣∣∣∣
u=u0

δu (8)

The variations should be small enough for this approximation to hold. Since d
dtx0i = fi(x0,u0), we thus

have

d

dt
δxi ≈

∂fi
∂x

∣∣∣∣
x=x0

δx +
∂fi
∂u

∣∣∣∣
u=u0

δu (9)
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Combining all n state equations noting that we replace ”≈” by ”=” in (9), gives

d

dt
δx =



∂f1
∂x

∣∣∣
x=x0

∂f2
∂x

∣∣∣
x=x0

...
∂fn
∂x

∣∣∣
x=x0


δx +



∂f1
∂u

∣∣∣
u=u0

∂f2
∂u

∣∣∣
u=u0

...
∂fn
∂u

∣∣∣
u=u0


δu (10)

= Aδx +Bδu (11)

where A =


∂f1
∂x1

∂f1
∂x2

· · · ∂f1
∂xn

∂f2
∂x1

∂f2
∂x2

· · · ∂f2
∂xn

...
∂fn
∂x1

∂fn
∂x2

· · · ∂fn
∂xn


∣∣∣∣∣∣∣∣∣∣
x=x0

and B =


∂f1
∂u1

∂f1
∂u2

· · · ∂f1
∂un

∂f2
∂u1

∂f2
∂u2

· · · ∂f2
∂un

...
∂fn
∂u1

∂fn
∂u2

· · · ∂fn
∂un


∣∣∣∣∣∣∣∣∣∣
u=u0

.

Since x(t) = x0 + δx(t) = δx(t) and u(t) = u0 + δu(t) = δu(t), (11) becomes

ẋ(t) = Ax(t) +Bu(t)

Problem 4

(a) Choosing x =


x1
x2
x3
x4

 =


r
ṙ
θ

θ̇

 as state variables, y =

[
r
θ

]
as output variables, and u =

[
ur
uθ

]
as input

variables gives the nonlinear state space equation as

ẋ =


ṙ
r̈

θ̇

θ̈

 = f(x,u) =


ṙ

rθ̇2 − k/r2 + ur
θ̇

−2ṙθ̇/r + uθ/r

 (12)

(b) Let k = r30ω
2
0 , we check that x0 =


r0
0
ω0t
ω0

 and u0 =

[
0
0

]
is one solution to the state space equation

(12). Indeed, we can easily see that ẋ0 =


0
0
ω0

0

 and f(x0,u0) =


0

r0ω
2
0 − k/r2 + 0

ω0

−2(0)ω0/r0 + 0

 =


0
0
ω0

0

. So,

ẋ0 = f(x0,u0). We now can obtain a linearized system around the point (x0,u0) by using derived
equations from Problem 3. That is,

δẋ = Aδx +Bδu

δy = Cδx

where

A =


∂f1
∂x1

∂f1
∂x2

· · · ∂f1
∂x4

∂f2
∂x1

∂f2
∂x2

· · · ∂f2
∂x4

...
∂f4
∂x1

∂f4
∂x2

· · · ∂f4
∂x4


∣∣∣∣∣∣∣∣∣∣
x=x0

=


0 0 0 0

3ω2
0 0 0 2r0ω0

0 0 0 0
0 −2ω0/r0 0 0


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B =


∂f1
∂u1

∂f1
∂u2

∂f2
∂u1

∂f2
∂u2

∂f3
∂u1

∂f3
∂u2

∂f4
∂u1

∂f4
∂u2


∣∣∣∣∣∣∣∣∣
u=u0

=


0 0
1 0
0 0
0 1/r0



C =

[
1 0 0 0
0 0 1 0

]

Problem 5

The system in Figure (a) is linear and the system in Figure (b) and (c) are non linear. In Figure (a),
y(t) = f(x(t)) = kx(t) for some non-zero k which satisfies additivity and homogeneity properties for a
linear system. In Figure (b), y(t) = f(x(t)) = kx(t) + y0 does not satisfy the additivity condition, that
is, f(x1(t) + x2(t)) = k(x1(t) + x2(t)) + y0 6= f(x1(t)) + f(x2(t)) = kx1(t) + kx2(t) + 2y0. In Figure (c),
the graph is a nonlinear curve.

In Figure (b), the system with output ȳ(t) = y(t)− y0 = g(u(t)) = ku(t) is linear.

Problem 6

Let f : u(t)→ y(t) be the transfer function in the time domain and denote indicator operator 1(.) whose
value is 1 if its argument is true; otherwise, its value is zero.

(a) Linearity

• Additivity

f(u1(t) + u2(t)) = 1(t ≤ α)(u1(t) + u2(t))

= 1(t ≤ α)u1(t) + 1(t ≤ α)u2(t)

= f(u1(t)) + f(u2(t))

for any inputs u1(t) and u2(t).

• Homogeneity

f(ku(t)) = 1(t ≤ α)ku(t)

= k1(t ≤ α)u(t)

= kf(u(t))

for any constant k and input u(t).

Therefore, the system is linear.

(b) Time-Invariance

Consider input u(t) = 1 , 0 < T < α, and y(t) = f(u(t)) = 1(t ≤ α). We thus have y(t − T ) =
1(t − T ≤ α) = 1(t ≤ α + T ). In the other hand, f(u(t − T )) = f(1) = 1(t ≤ α)). Since
f(u(t− T )) 6= y(t− T ), the system is time-variant.

(c) Causality

The output does not depend on future inputs, so the system is causal.
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Problem 7

Consider the following network

Figure 5: The circuit network

Applying Kirchhoff’s current law at node A yields C2ẋ2 = x3, at node B yields u−x1

R = C1ẋ1 + C2ẋ2 =
C1ẋ1 + x3. We thus have

ẋ1 = x1
−1

RC1
+ x3

−1

C1
+

u

RC1

ẋ2 = x3
1

C2

Applying Kirchhoff’s voltage law to the right-hand-side loop yields x1 − x2 = Lẋ3, or

y = Lx3 = x1 − x2

Choosing x =

x1x2
x3

 as state variables, u as input variable, and y as output variable gives the state space

equations for the system

ẋ =

−1/RC1 0 −1/C1

0 0 1/C2

1/L −1/L 0

x +

1/RC1

0
0

u
y =

[
1 −1 0

]
x + 0.u

Assume zero initial state values and take Laplace transform both sides of the state space equations, we
have

sX(s) = AX(s) +BU(s)

Y (s) = CX(s)

Therefore, the transfer function is

H(s) =
Y (s)

U(s)

=
CX(s)

U(s)

= C(sI −A)−1B

=
− 1
RC1

s2

s3 + 1
RC1

s2 + 1
L ( 1

C1
+ 1

C2
)s+ 1

C1C2LR
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Problem 8

Consider the discrete-time system represented by the difference equation

y(k + 3) + 2y(k + 2) + 3y(k + 1) + y(k) = u(k)

Choosing x(k) =

y(k + 2)
y(k + 1)
y(k)

 as state variables, u(k) as input variable, and y(k) as output variable gives

the following state space equations

x(k + 1) =

y(k + 3)
y(k + 2)
y(k + 1)


=

−2 −3 −1
1 0 0
0 1 0

x(k) +

1
0
0

u(k)

y(k) =
[
0 0 1

]
x(k)

or

x(k + 1) = Ax(k) +Bu(k)

y(k) = Cx(k) +Du(k)

where A =

−2 −3 −1
1 0 0
0 1 0

, B =

1
0
0

, C =
[
0 0 1

]
, and D = 0.

The transfer function can be obtained by directly applying Z-transform to both sides of the difference
equation

Y (z)z3 + 2Y (z)z2 + 3Y (z)z + Y (z) = U(z)

So, the transfer function is

H(z) =
Y (z)

U(z)

=
1

z3 + 2z2 + 3z + 1

Problem 9

(a) Consider the transfer function

ĝ(s) =
Y (s)

U(s)
=

kω2
n

s2 + 2ξωns+ ω2
n

Taking inverse Laplace transform both sides of the transfer function gives

ÿ + 2ξωnẏ + ω2
ny = kω2

nu

By choosing x =

[
y
ẏ

]
as state variables, u as input variable and y as output variable, we have

ẋ =

[
ẏ
ÿ

]
=

[
0 1
−ω2

n −2ξωn

]
x +

[
0
kω2

n

]
u

y =
[
1 0

]
x + 0.u
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(b) With the transfer function,

ĝ(s) =
Y (s)

U(s)
=

s+ a

s2 + 2ξωns+ ω2
n

the differential equation becomes

ÿ + 2ξωnẏ + ω2
ny = u̇+ au

Now, choose x =

yẏ
u

 as state variables, u =

[
u
u̇

]
as input variable, and y as output variables. We

thus have

ẋ =

ẏÿ
u̇


=

 0 1 0
−ω2

n −2ξωn a
0 0 0

x +

0 0
0 1
0 1

u

y =
[
1 0 0

]
x + 0.u

Problem 10

First, choose x =

y1ẏ1
y2

 as state variables, u =

[
u1
u2

]
as input variables, and y =

[
y1
y2

]
as output variables.

The state-space equation of the system is

ẋ =

ẏ1ÿ1
ẏ2


=

 0 1 0
−k2 −k1 0

0 −k5 −k4

x +

 0 0
1 k3
k6 0

u

y =

[
1 0 0
0 0 1

]
x + 0.u
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