1. (a) We will disprove this by providing a counterexample

Let $\mathrm{p}=13$
$p+2=15$
$15=r * s$ where $r=3$ and $s=5$
therefore, since neither r nor s equals $1, p$ is prime, but $p+2$ is not prime
(b) Let m and n both be even, thus $\mathrm{m}-\mathrm{n}$ and $\mathrm{m}+\mathrm{n}$ can be written as
$m-n=2 k-2 l=2(k-l)$
$m+n=2 k+2 l=2(k+l)$
thus, $m-n$ and $m+n$ are both even.
Now, let m and n both be odd, thus $\mathrm{m}-\mathrm{n}$ and $\mathrm{m}+\mathrm{n}$ can be written as
$m-n=(2 k+1)-(2 l+1)=2(k-l)$
$m+n=(2 k+1)+(2 l+1)=2(k+l+1)$
thus, $\mathrm{m}+\mathrm{n}$ and $\mathrm{m}-\mathrm{n}$ are both even.
now, let m be odd and n be even
$m-n=(2 k+1)-2 l=2(k-l)+1$
$m+n=(2 k+1)+2 l=2(k+l)+1$
thus $\mathrm{m}-\mathrm{n}$ and $\mathrm{m}+\mathrm{n}$ are both odd. This proves that for all integers m and $\mathrm{n}, \mathrm{m}-\mathrm{n}$ and $\mathrm{m}+\mathrm{n}$ are either both odd or both even
(c) We can disprove by providing a counter-example

Let $x=5.3$ and $y=4.8$
$\lfloor 5.3\rfloor-\lfloor 4.8\rfloor=5-4=1$
$\lfloor 5.3-4.8\rfloor=\lfloor 0.5\rfloor=0$
thus disproving this claim
(d) If we let x be even, it can be written as $x=2 k$ for some integer k
then, $(2 k)^{2}-(2 k)-3$
$4 k^{s}-2 k-3=2\left(2 k^{2}-k-2\right)+1$
so with x being even, $x^{2}-x-3$ is odd
now let x be odd and written as $x=2 k+1$
then $(2 k+1)^{2}-(2 k+1)-3$
$=4 k^{2}+4 k+1-2 k+1-3=4 k^{2}+2 k-1$
$=2\left(k^{2}+k-1\right)+1$
thus when $x=2 k+1 x^{2}-x-3$ is odd which proves the statement
(e) let m be any even natural number, we can write it as
$m=2 k$
$m^{7}=(2 k)^{7}$
$m^{7}=2^{7} * k^{7}$
$m^{7}=2\left(2^{6} * k^{7}\right)$
so $m^{7}=2 l$ where $l=\left(2^{6} * m^{7}\right)$ thus proving that if m is an even natural number, then m^{7} is also even.
2. $d|a \rightarrow d| a x$ because if d divides a, then a is a multiple of d . So for any x , ax is still a multiple of d . This logic can be applied similarly to $d|b \rightarrow d| b y$
then, $d|a \wedge d| b \rightarrow d \mid(a+b)$ because
$d \mid a \rightarrow d q=a$
$d \mid b \rightarrow d k=b$
$a+b=d q+d k=d(q+k)$ thus $d \mid(a+b)$
finally, $d|a x \wedge d| b y \rightarrow d \mid(a x+b y)$
3. given x, y, z if $x-y$ is odd, and $y-z$ is even, then they can be written as:
$x-y=2 k+1$ for some integer k and $y-z=2 l$ for some integer l
now, we will isolate x and z to test the proof.
$x=2 k+y+1$ and $z=-2 l+y$
then, $x-z=2 k+y+1+2 l-y=2(k+l)+1$ thus, $x-z=2 n+1$ where $n=(k+1)$
therefore $x-z$ is odd
4. To prove that if r is irrational, then $r^{\frac{1}{t}}$ is also irrational, we will prove the contrapositive.

Start by assuming that $r^{\frac{1}{t}}$ is rational so $r^{\frac{1}{t}}=z$ such that $z \in \mathbb{Q}$
since $z \in \mathbb{Q}, z=\frac{a}{b}$ such that $b \neq 0$ and $a, b \in \mathbb{Z}$
$r^{\frac{1}{t}}=z$
$\left(r^{\frac{1}{t}}\right)^{t}=z^{t}=r$
$r=\left(\frac{a}{b}\right)^{t}=\frac{a^{t}}{b^{t}}$ where $t>0$
thus $b^{t} \neq 0$ and $a^{t}, b^{t} \in \mathbb{Z}$ because a^{t} and b^{t} are just the product of integers and therefore r is a rational number which proves the contrapositive

