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1. Problem 1 - Elastic Rods:

(a)

Show that The elastic energy in a bent beam is is

L1
Ul = | Y1 Pds
0 2
given that the elastic energy per unit length of a bent steel rod is given by é% where R is the
radius of curvature due to bending.

Proof. From vector calculus we know that the length of the radius of curvature vector for a curve
y(z) is given by

L (1+y?): 1
A=~
where we approximate y’? to be small enough to ignore in this case. Then we have

Show that if there is a load of mass M on top of the rod, the energy can be approximated by

vl = [ (S - M0wr)e:

Proof. Gravitational potential energy is clearly going to be
Uy =MgL,

where L, is the height of the load after the rod bends. We can calculate this by:

Lz:/dz

along the curve of the rod. We know that dl = \/(1 +y'?)dz, so we plug this into

dl
fo-|
1 + y/2
But now we assume that the deflection is very small so we get that dl =~ dz and expand the
denominator:

L L 1
Uy = / Mgdz ~ / Mg(1 = 5y")dz
0 0

Thus the total energy functional is of the desired form (excluding the constant term MgL). [



()

Show that the column is unstable to buckling and collapses when Mg > Z—EYI .
Proof. Plugging in the ansatz for the solutions:
> . nmz
y(z) = nzl ansin( 7 )

into the energy functional:
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Doing the trig integrals out, we get factors of % out, and the remaining terms depend on n. We
want to know when these terms are negative for a given n value, which would tell us that the
energy drops down to a negative value. This first happens at n = 1 as the coefficient becomes
negative when

2
= vi(%)
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The light cantilever: Find y(z) for 0 < z < L assuming that a rod is fixed into a wall with a load
of mass M hanging at the end.

Proof. We want to minimize the energy functional

U= /OL (g(y”)Q)dz + Mgy(L)

But we will be careful not to throw out terms when we integrate by parts.

L
Uty +69) = Ulw) = | 5 ((0+ 8 = (")) ds + My(y(L) + 69(L) ~ (L)
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We new integrate by parts twice:
L
U = (y"oy)§ —/ y @ (dy) + Mgdy(L)
0

L
sU = (y"sy)l§ — (Poy)l§ +/ yWoydz + Mgdy(L) =0
0

This is true for any dy(L), knowing that dy(0) = 0. If we set all these terms to zero, and factor
out the terms dependent on we the differential equation

y@ =0
with the boundary conditions
Mg=YIy®
y"(L) =0

y/(0) = (0) =0



The most general solution to the differential equation is y(z) = Az® + Bz?+ Cz+ D But we know
immediately that D is zero. From the other boundary conditions we get:

y'(L) =6AL+2B =0
Mg

A= —
0 YI

Thus the solution is

And

2. Lagrange Multipliers

(a) Find the stationary points of the function
f(z,y) = 1322 + 8xy + Ty?
subject to x% +y? = 1.
Proof. We first express this as a matrix multiplication:
x'Ax = f(z,y)
Minimizing this function with the constraint gives us an eigenvalue problem to solve:
<x,Ax > A< x,x > —1) = g(x)

We then differentiate: 9
Y —9Ax— 22 =0
ox

And arrive at
Ax = x

. Then we can find the eigenvalues of this matrix using the standard techniques. We find them
to be
A=10,5

We can also find normalized eigenvectors and we find them to be

1
€1 = 7(27 1)

E

and 1
ez = —=(-1,2)

V5

This gives us our two stationary points. But since we know the constraint is in terms of 22 and
y?, we actually get 4 stationary points that are

(213, y) = :|:€1, *eo

3. The Catenary Again:

(a) From the resulting functional derivative, derive two coupled equations for the catenary, one for
x(s) and one for y(s).



Proof. We have to minimize the energy functional

U(z,y) =/OLpgy(8)dS+/O

L

(@2 + 9% — 1)\(s)ds

where s is the coordinate along the curve. We can use euler-lagrange equations

Now introduce & = cosy, y = siny

of _ d 05,
dr  ds 0%
of _ d 0f
oy ds(ay):
0= \i: + \i

pg = 2\ + 2\j

0= )\cosz/; — )\smww
pg = 2(Asiny + Acosypi))

Square these and add them up, we get:

From looking at a section of chain,

and

(pg)? = 4(\* + N*)?)

we can deduce that

T(s+ds)y —T(s)y = pgds

T(s)e =T(s+ds),

If we expand T(s + ds), = T(s), + T,ds and plug in, we find that 7}, = pg. We can then define
T, = 2Xcosyp and T, = 2\sintp such that T + 17 = (pg)>.

Now find the material density p(s) in order for a length of chain

of radius a.

ma
2
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to hang in an arc of a circle

Proof. If we draw the arc for ¢ along the arc of the circle, we can deduce that ¢ = £. We also

know that T}, = 0, thus 4 (Acosy) = 0, A(s)cost) = K. Thus

d

a

p(s)g = 20s(Asin(s)) = 233(Ktan(f)) = %secQ(f)

a
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