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1. Problem 1 - Elastic Rods:

(a) Show that The elastic energy in a bent beam is is

U [y] =

∫ L

0

1

2
Y I(y′′)2dz

given that the elastic energy per unit length of a bent steel rod is given by 1
2
Y I
R2 where R is the

radius of curvature due to bending.

Proof. From vector calculus we know that the length of the radius of curvature vector for a curve
y(x) is given by

|~R| = (1 + y′2)
3
2

y′′
≈ 1

y′′

where we approximate y′2 to be small enough to ignore in this case. Then we have

U [y] =

∫ L

0

1

2

Y I

R2
dz =

∫ L

0

1

2

Y I

(
y′′)2l

(b) Show that if there is a load of mass M on top of the rod, the energy can be approximated by

U [y] =

∫ L

0

(Y I
2

(y′′)2 − Mg

2
(y′)2

)
dz

Proof. Gravitational potential energy is clearly going to be

Ug = MgLz

where Lz is the height of the load after the rod bends. We can calculate this by:

Lz =

∫
dz

along the curve of the rod. We know that dl =
√

(1 + y′2)dz, so we plug this into∫
dz =

∫
dl√

1 + y′2

But now we assume that the deflection is very small so we get that dl ≈ dz and expand the
denominator:

Ug =

∫ L

0

Mgdz ≈
∫ L

0

Mg(1− 1

2
y′2)dz

Thus the total energy functional is of the desired form (excluding the constant term MgL).
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(c) Show that the column is unstable to buckling and collapses when Mg ≥ π2

L2Y I.

Proof. Plugging in the ansatz for the solutions:

y(z) =

∞∑
n+=1

ansin(
nπz

L
)

into the energy functional:

U =

∞∑
n=1

a2n

∫ L

0

Y I

2

(nπ
L

)4
sin2

(nπz
L

)
− Mg

2

(nπ
L

)2
cos2

(nπz
L

)
dz

Doing the trig integrals out, we get factors of 1
2 out, and the remaining terms depend on n. We

want to know when these terms are negative for a given n value, which would tell us that the
energy drops down to a negative value. This first happens at n = 1 as the coefficient becomes
negative when

Mg ≥ Y I
(nπ
L

)2
.

(d) The light cantilever: Find y(z) for 0 < z < L assuming that a rod is fixed into a wall with a load
of mass M hanging at the end.

Proof. We want to minimize the energy functional

U =

∫ L

0

(Y I
2

(y′′)2
)
dz +Mgy(L)

But we will be careful not to throw out terms when we integrate by parts.

U(y + δy)− U(y) =

∫ L

0

Y I

2

(
(y + δy)2 − (y′′)2

)
dz +Mg(y(L) + δy(L)− y(L))

δU =

∫ L

0

Y I

2
(2y′′(δy)′′ + (δy′′)2)dz +Mgδy(L)

δU =

∫ L

0

Y I

2
(2y′′(δy)′′ +O(δy)2)dz +Mgδy(L)

δU =

∫ L

0

Y I(y′′(δy)′′dz +Mgδy(L)

We new integrate by parts twice:

δU = (y′′δy)|L0 −
∫ L

0

y(3)(δy)′ +Mgδy(L)

δU = (y′′δy)|L0 − (y3δy)|L0 +

∫ L

0

y(4)δydz +Mgδy(L) = 0

This is true for any δy(L), knowing that δy(0) = 0. If we set all these terms to zero, and factor
out the terms dependent on we the differential equation

y(4) = 0

with the boundary conditions

Mg = Y Iy(3)

y′′(L) = 0

y′(0) = y(0) = 0
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The most general solution to the differential equation is y(z) = Az3 +Bz2 +Cz+D But we know
immediately that D is zero. From the other boundary conditions we get:

y′′(L) = 6AL+ 2B = 0

6A =
Mg

Y I

Thus the solution is

y(z) =
Mg

Y I
(
1

6
z3 − L

2
z2)

And

y(L) = −MgL2

3Y I

2. Lagrange Multipliers

(a) Find the stationary points of the function

f(x, y) = 13x2 + 8xy + 7y2

subject to x2 + y2 = 1.

Proof. We first express this as a matrix multiplication:

xtAx = f(x, y)

Minimizing this function with the constraint gives us an eigenvalue problem to solve:

< x,Ax > −λ(< x,x > −1) = g(x)

We then differentiate:
∂g

∂x
= 2Ax− 2λx = 0

And arrive at
Ax = λx

. Then we can find the eigenvalues of this matrix using the standard techniques. We find them
to be

λ = 10, 5

We can also find normalized eigenvectors and we find them to be

e1 =
1√
5

(2, 1)

and

e2 =
1√
5

(−1, 2)

This gives us our two stationary points. But since we know the constraint is in terms of x2 and
y2, we actually get 4 stationary points that are

(x, y) = ±e1,±e2

3. The Catenary Again:

(a) From the resulting functional derivative, derive two coupled equations for the catenary, one for
x(s) and one for y(s).
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Proof. We have to minimize the energy functional

U(x, y) =

∫ L

0

ρgy(s)ds+

∫ L

0

(ẋ2 + ẏ2 − 1)λ(s)ds

where s is the coordinate along the curve. We can use euler-lagrange equations

∂f

∂x
=

d

ds
(
∂f

∂ẋ
)

∂f

∂y
=

d

ds
(
∂f

∂ẏ
)⇒

0 = λ̇ẋ+ λẍ

ρg = 2λ̇ẏ + 2λÿ

Now introduce ẋ = cosψ, ẏ = sinψ

0 = λ̇cosψ − λsinψψ̇
ρg = 2(λ̇sinψ + λcosψψ̇)

Square these and add them up, we get:

(ρg)2 = 4(λ̇2 + λ2ψ̇2)

From looking at a section of chain, we can deduce that

T (s+ ds)y − T (s)y = ρgds

and
T (s)x = T (s+ ds)x

If we expand T (s + ds)y = T (s)y + Ṫyds and plug in, we find that Ṫy = ρg. We can then define

Tx = 2λcosψ and Ty = 2λsinψ such that Ṫ 2
y + Ṫ 2

x = (ρg)2.

(b) Now find the material density ρ(s) in order for a length of chain πa
2 to hang in an arc of a circle

of radius a.

Proof. If we draw the arc for ψ along the arc of the circle, we can deduce that ψ = s
a . We also

know that Ṫx = 0, thus d
ds (λcosψ) = 0, λ(s)cosψ = K. Thus

ρ(s)g = 2∂s(λsinψ(s)) = 2∂s(Ktan(
s

a
)) =

2K

a
sec2(

s

a
)
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