
Haskell Performance
Measurements

what to do if laziness has bitten you
(or you’ve eaten too much memory)

Bohdan Liesnikov
@phittacus

2018.04.22
1/20

https://twitter.com/phittacus

Overview

Spoilers!

This talk isn’t an eye-opening one.
there are profiling tools in haskell
they are actually usable
there is a couple of funny quirks and
techniques along the way

2/20

Overview

Spoilers!
This talk isn’t an eye-opening one.

there are profiling tools in haskell
they are actually usable
there is a couple of funny quirks and
techniques along the way

2/20

Overview

Spoilers!
This talk isn’t an eye-opening one.

there are profiling tools in haskell

they are actually usable
there is a couple of funny quirks and
techniques along the way

2/20

Overview

Spoilers!
This talk isn’t an eye-opening one.

there are profiling tools in haskell
they are actually usable

there is a couple of funny quirks and
techniques along the way

2/20

Overview

Spoilers!
This talk isn’t an eye-opening one.

there are profiling tools in haskell
they are actually usable
there is a couple of funny quirks and
techniques along the way

2/20

Overview (like, a serious one)

why do you need it?
(isn’t Haskell ponies and butterflies anyway?)
time profiling
memory profiling

3/20

Ponies and butterflies

Space leak

Not similar to memory leaks
“Space leak” simply means that we can do
better
Classic example

let xs = [1..1000000::Integer]
in sum xs * product xs

4/20

Ponies and butterflies

Space leak
Not similar to memory leaks

“Space leak” simply means that we can do
better
Classic example

let xs = [1..1000000::Integer]
in sum xs * product xs

4/20

Ponies and butterflies

Space leak
Not similar to memory leaks
“Space leak” simply means that we can do
better

Classic example
let xs = [1..1000000::Integer]
in sum xs * product xs

4/20

Ponies and butterflies

Space leak
Not similar to memory leaks
“Space leak” simply means that we can do
better
Classic example

let xs = [1..1000000::Integer]
in sum xs * product xs

4/20

Optimizations

An interesting theme for all1of us2

Fusion
map f . map g → map (f . g)

Strictness (in some arguments)

1Functional Programming with Bananas, Lenses, Envelopes and
Barbed Wire. 1991. E. Meijer, M. Fokkinga, R. Paterson [pdf]

2Blog posts by Don Stewart
https://donsbot.wordpress.com/tag/fusion/

5/20

https://archive.alvb.in/msc/11_infomtpt/papers/bananas-lenses_Meijer.pdf
https://donsbot.wordpress.com/tag/fusion/

Optimizations

An interesting theme for all1of us2

Fusion
map f . map g → map (f . g)

Strictness (in some arguments)

1Functional Programming with Bananas, Lenses, Envelopes and
Barbed Wire. 1991. E. Meijer, M. Fokkinga, R. Paterson [pdf]

2Blog posts by Don Stewart
https://donsbot.wordpress.com/tag/fusion/

5/20

https://archive.alvb.in/msc/11_infomtpt/papers/bananas-lenses_Meijer.pdf
https://donsbot.wordpress.com/tag/fusion/

Optimizations

An interesting theme for all1of us2

Fusion
map f . map g → map (f . g)

Strictness (in some arguments)

1Functional Programming with Bananas, Lenses, Envelopes and
Barbed Wire. 1991. E. Meijer, M. Fokkinga, R. Paterson [pdf]

2Blog posts by Don Stewart
https://donsbot.wordpress.com/tag/fusion/

5/20

https://archive.alvb.in/msc/11_infomtpt/papers/bananas-lenses_Meijer.pdf
https://donsbot.wordpress.com/tag/fusion/

Optimizations

Hylomorphism
Catamorphism followed by anamorphism
(fold then unfold)

Metamorphism
Anamorphism followed by catamorphism
(unfold then fold)

6/20

Optimizations

Hylomorphism
Catamorphism followed by anamorphism
(fold then unfold)
Metamorphism
Anamorphism followed by catamorphism
(unfold then fold)

6/20

Optimizations

Hylomorphism
Catamorphism followed by anamorphism
(fold then unfold)
Metamorphism
Anamorphism followed by catamorphism
(unfold then fold)

6/20

7/20

Example

takes three file names (initial, series of diffs
and final)
parses them
checks if they are fine
prints a verdict out

initial: diff: final:

me
you

2018.04.22 13:00
< me
> them

you
them

8/20

Example

takes three file names (initial, series of diffs
and final)
parses them
checks if they are fine
prints a verdict out

initial: diff: final:

me
you

2018.04.22 13:00
< me
> them

you
them

8/20

The simplest approach

In ghci
*Main> :set +s
*Main> process $ Files { initial = "i.list"

, final = "f.list"
, diff = "d.list"}

this is a correct diff
(10.11 secs, 11,753,183,352 bytes)

Not the same timing you would get in a real
setting

9/20

The simplest approach

Debug statements
import Debug.Trace (trace)
...
flip trace () $ "before" ++ show getCurrentTime
...
flip trace () $ "after" ++ show getCurrentTime

Meh

10/20

Compiling

You can’t just profile it right away — we need to
compile it properly beforehand
ghc-options:

...
--enable-profiling # and/or --enable-library-profiling
-fprof-auto
-rtsopts

Yes, this actually means recompiling libraries
with profiling enabled

11/20

Simple approach

./dist/build/demo/demo +RTS
-sstderr
...
INIT time 0.002s (0.001s elapsed)
MUT time 0.343s (0.339s elapsed) <- doing useful things
GC time 0.349s (0.346s elapsed) <- gc is gc
RP time 0.000s (0.000s elapsed)
PROF time 0.000s (0.000s elapsed)
EXIT time 0.003s (0.004s elapsed)
Total time 0.697s (0.690s elapsed)
...
Alloc rate 3,426,690,480 bytes per MUT second

Productivity 68.7% of total user, 68.8% of total elapsed

12/20

Stack traces and flame graphs

./dist/build/demo/demo +RTS -p
1 2 3 4 5

individual inherited
COST CENTRE MODULE SRC no. entries %time %alloc %time %alloc
...
parseDiff Main ... 419 1 0.0 0.0 39.6 66.9
parseDiff.(...) Main ... 421 1 5.9 7.3 39.6 66.9
parseLine Main ... 422 161080 26.7 59.6 33.7 59.6

...

1 entries — number of times this particular point in the call tree was entered

2 %time — percentage of the total run time of the program spent at this point

3 %alloc — percentage of the total memory allocations of the program made by this call

4 %time — percentage of the total run time of the program spent below this point in
the call tree.

5 %alloc — percentage of the total memory allocations of the program made by this call
and all of its sub-calls

13/20

Stack traces and flame graphs

FlameGraph by Brendan Gregg
ghc-prof-flamegraph by FP Complete

So
good graphs, immedately runs faster

14/20

https://github.com/brendangregg/FlameGraph
https://github.com/fpco/ghc-prof-flamegraph

Cost centers

Cost centres are just program annotations
{-# SCC "name" #-} <expression>
-fprof-auto automatically insert a cost
centre annotation around every binding not
marked INLINE in your program
You are entirely free to add cost centre
annotations yourself.

15/20

Space profiling

Not that easy with lazy evaluation and all the
transformations 3

All we can do — get some measurements from
the beforementioned tools

Or we can try to detect space leaks using a cute
trick4

3You can do that, just it isn’t pleasant in any way
4Neil Mitchell Detecting Space Leaks. 2015

https://neilmitchell.blogspot.com/2015/09/detecting-space-leaks.html
16/20

https://neilmitchell.blogspot.com/2015/09/detecting-space-leaks.html

Space profiling

Not that easy with lazy evaluation and all the
transformations 3

All we can do — get some measurements from
the beforementioned tools
Or we can try to detect space leaks using a cute
trick4

3You can do that, just it isn’t pleasant in any way
4Neil Mitchell Detecting Space Leaks. 2015

https://neilmitchell.blogspot.com/2015/09/detecting-space-leaks.html
16/20

https://neilmitchell.blogspot.com/2015/09/detecting-space-leaks.html

Space profiling

Run the program with a specific stack size,
./demo +RTS -K100K to run with a
100Kb stack.
Increase/decrease the stack size until you
have determined the minimum stack for
which the program succeeds
Reduce the stack by a small amount and
rerun

17/20

Space profiling

The -xc run will print out the stack trace
on every exception, look for the one which
says stack overflow
Attempt to fix the space leak, confirm by
rerunning
Repeat until the test works with a small
stack, typically -K1K.

18/20

Space profiling can have nice graphs too!

add -caf-all to ghc-flags and then run as
./demo +RTS -hc -p -K100M

19/20

Questions?

join us at Papers We Love Kyiv (@pwl_kyiv)
20/20

https://twitter.com/pwl_kyiv

	Time profiling
	Cost centers

