Haskell Performance
Measurements

what to do if laziness has bitten you
(or you've eaten too much memory)

Bohdan Liesnikov

@phittacus

2018.04.22

1/20

https://twitter.com/phittacus

Overview

Spoilers!

2/20

Overview

Spoilers!
This talk isn’t an eye-opening one.

2/20

Overview

Spoilers!
This talk isn’t an eye-opening one.

m there are profiling tools in haskell

2/20

Overview

Spoilers!
This talk isn’t an eye-opening one.

m there are profiling tools in haskell
m they are actually usable

2/20

Overview

Spoilers!
This talk isn’t an eye-opening one.
m there are profiling tools in haskell
m they are actually usable

m there is a couple of funny quirks and
techniques along the way

2/20

Overview (like, a serious one)

m why do you need it?
(isn’t Haskell ponies and butterflies anyway?)

m time profiling

m memory profiling

3/20

Ponies and butterflies

Space leak

4/20

Ponies and butterflies

Space leak
m Not similar to memory leaks

4/20

Ponies and butterflies

Space leak
m Not similar to memory leaks

m “Space leak” simply means that we can do
better

4/20

Ponies and butterflies

Space leak
m Not similar to memory leaks

m “Space leak” simply means that we can do
better

m Classic example

let xs = [1..1000000::Integer]
in sum xs * product xs

4/20

Optimizations

An interesting theme for alllof us?

!Functional Programming with Bananas, Lenses, Envelopes and
Barbed Wire. 1991. E. Meijer, M. Fokkinga, R. Paterson [pdf]

2Blog posts by Don Stewart
https://donsbot.wordpress.com/tag/fusion/

5/20

https://archive.alvb.in/msc/11_infomtpt/papers/bananas-lenses_Meijer.pdf
https://donsbot.wordpress.com/tag/fusion/

Optimizations

An interesting theme for alllof us?

m Fusion
map f . map g > map (f . g)

!Functional Programming with Bananas, Lenses, Envelopes and
Barbed Wire. 1991. E. Meijer, M. Fokkinga, R. Paterson [pdf]

2Blog posts by Don Stewart
https://donsbot.wordpress.com/tag/fusion/

5/20

https://archive.alvb.in/msc/11_infomtpt/papers/bananas-lenses_Meijer.pdf
https://donsbot.wordpress.com/tag/fusion/

Optimizations

An interesting theme for alllof us?

m Fusion
map f . map g > map (f . g)

m Strictness (in some arguments)

!Functional Programming with Bananas, Lenses, Envelopes and
Barbed Wire. 1991. E. Meijer, M. Fokkinga, R. Paterson [pdf]

2Blog posts by Don Stewart
https://donsbot.wordpress.com/tag/fusion/

5/20

https://archive.alvb.in/msc/11_infomtpt/papers/bananas-lenses_Meijer.pdf
https://donsbot.wordpress.com/tag/fusion/

Optimizations

m Hylomorphism
Catamorphism followed by anamorphism
(fold then unfold)

6/20

Optimizations

m Hylomorphism
Catamorphism followed by anamorphism
(fold then unfold)

m Metamorphism
Anamorphism followed by catamorphism
(unfold then fold)

6/20

Optimizations

m Hylomorphism
Catamorphism followed by anamorphism
(fold then unfold)

m Metamorphism
Anamorphism followed by catamorphism
(unfold then fold)

6/20

7/20

Example

m takes three file names (initial, series of diffs
and final)

m parses them

m checks if they are fine

m prints a verdict out

8/20

Example

m takes three file names (initial, series of diffs
and final)

m parses them

m checks if they are fine

m prints a verdict out

initial: diff: final:
me ﬁ 2018.04.22 13:00 you
you me them

8/20

> them

The simplest approach

m In ghci
*Main> :set +s
*Main> process $ Files { initial = "i.list"
, final = "f,1list"
, diff = ""d.list"}

this is a correct diff
(18.11 secs, 11,753,183,352 bytes)

Not the same timing you would get in a real
setting

9/20

The simplest approach

m Debug statements

import Debug.Trace (trace)
flip trace () $ "before" ++ show getCurrentTime

flip trace () $ "after" ++ show getCurrentTime

Meh

10/20

Compiling

You can’t just profile it right away — we need to
compile it properly beforehand
ghc-options:

::énable—profiling # and/or --enable-library-profiling

-fprof-auto
-rtsopts

Yes, this actually means recompiling libraries
with profiling enabled

11/20

Simple approach

./dist/build/demo/demo +RTS

-sstderr

INIT time 0.002s
MUT time 0.343s
GC time 0.349s
RP time 0.000s
PROF time 0.000s
EXIT time 0.003s
Total time 0.697s

Alloc rate

Productivity

12/20

NANA~NAAA~AAA

Q20022

.001s
.339s
.346s
.000s
.000s
.004s
.690s

3,426,690,480 bytes

elapsed)

elapsed) <- doing useful things
elapsed) <- gc is gc

elapsed)

elapsed)

elapsed)

elapsed)

per MUT second

68.7% of total user, 68.8% of total elapsed

Stack traces and flame graphs

./dist/build/demo/demo +RTS -p

1 2 3 4 5
individual inherited
COST CENTRE MODULE SRC no. entries %time %alloc %time %alloc
parseDiff Main ... 419 1 0.0 0.0 39.6 66.9
parseDiff.(...) Main ... 421 1 5.9 7.3 39.6 66.9
parselLine Main ... 422 161080 26.7 59.6 33.7 59.6

1 entries — number of times this particular point in the call tree was entered

2 %time — percentage of the total run time of the program spent at this point

3 %alloc — percentage of the total memory allocations of the program made by this call

4 %time — percentage of the total run time of the program spent below this point in
the call tree.

5 %alloc — percentage of the total memory allocations of the program made by this call

and all of its sub-calls

13/20

Stack traces and flame graphs

m FlameGraph by Brendan Gregg
m ghc-prof-flamegraph by FP Complete

Flame Graph
|}
a

So

good graphs, immedately runs faster

14/20 L 4

https://github.com/brendangregg/FlameGraph
https://github.com/fpco/ghc-prof-flamegraph

Cost centers

m Cost centres are just program annotations
{-# SCC "name" #-} <expression>

m -fprof-auto automatically insert a cost
centre annotation around every binding not

marked INLINE in your program
m You are entirely free to add cost centre
annotations yourself.

15/20

Space profiling

Not that easy with lazy evaluation and all the
transformations 3

All we can do — get some measurements from
the beforementioned tools

3You can do that, just it isn’t pleasant in any way
4Neil Mitchell Detecting Space Leaks. 2015
https://neilmitchell.blogspot.com/2015/09/detecting-space-leaks.html

16/20

https://neilmitchell.blogspot.com/2015/09/detecting-space-leaks.html

Space profiling

Not that easy with lazy evaluation and all the
transformations 3

All we can do — get some measurements from
the beforementioned tools

Or we can try to detect space leaks using a cute
trick*

3You can do that, just it isn’t pleasant in any way
4Neil Mitchell Detecting Space Leaks. 2015
https://neilmitchell.blogspot.com/2015/09/detecting-space-leaks.html

16/20

https://neilmitchell.blogspot.com/2015/09/detecting-space-leaks.html

Space profiling

m Run the program with a specific stack size,
./demo +RTS -K100K to run with a
100Kb stack.

m Increase/decrease the stack size until you
have determined the minimum stack for
which the program succeeds

m Reduce the stack by a small amount and
rerun

17/20

Space profiling

m The -xc run will print out the stack trace
on every exception, look for the one which
says stack overflow

m Attempt to fix the space leak, confirm by
rerunning

m Repeat until the test works with a small
stack, typically -K1K.

18/20

Space profiling can have nice graphs too!

add -caf-all to ghe-flags and then run as
./demo +RTS -hc -p -K100M

[demo +RTS -N -hc -p -K100M 6,496,594 bytes x seconds Sun Apr 22 09:46 2018 |

2
3

W (421)parseDift.(..parse..

[(422)parseLinelparseDif(...

[l (#16)run/concatinGetConten.

I (429)runCheck firunCheck.

19/20

Questions?

join us at Papers We Love Kyiv (@pwl_kyiv)

20,20

https://twitter.com/pwl_kyiv

	Time profiling
	Cost centers

