Often referred to as the most beautiful equation in mathematics, Euler's Identity,

$$
e^{i \pi}+1=0
$$

involves the five most important constants; the additive identity 0 , the multiplicative identity 1 , the imaginary number i, and the two irrational numbers e and π. It should feel crazy that this is true! The goal of this project is to see why this equation works and use infinite series in a new way.

You should present your work on this project in a written format for a reader learning about infinite series for the first time; think about yourself at the start of this chapter of material. Explain what infinite series are, convergence vs. divergence, and how series can represent functions.

You want to show that $e^{i \pi}+1=0$. The main idea is to use infinite power series to show Euler's Formula

$$
e^{i \theta}=\cos \theta+i \sin \theta
$$

The imaginary number i that appears here may be new to you. The only fact you really need for this is that $i^{2}=-1$. We can multiply i by real numbers as well as i itself where simplifications can be made. For example:

$$
(-2 i)^{3}=(-2)^{3} i^{3}=-8\left(i^{2}\right)(i)=-8(-1) i=8 i
$$

You do not need to delve into the world of complex analysis... So, to check convergence in this assignment, it is safe to assume that the absolute value of i is one, and adjustments can be made accordingly if needed. So,

$$
\left|-\frac{1}{2} i\right|=\left|-\frac{1}{2}\right||i|=\frac{1}{2}
$$

It is up to you to organize this work and your explanation in a logical way. Keep the intended audience in mind as well as the guidelines for written work found in the Specifications for Calculus Work document.

