START

Put problem in standard form

$$
\begin{aligned}
& \varepsilon y^{(m)}(x)+\alpha_{1}(x) y^{(m-1)}(x)+\alpha_{2}(x) y^{(m-2)}(x)+\cdots \\
& \\
& \quad+\alpha_{m-1}(x) y^{\prime}(x)+\alpha_{m}(x) y(x)=f(x), \quad x \in[a, b]
\end{aligned}
$$

Assume an approximate solution $y_{n}(x)=\sum_{i=0}^{n} c_{n} Q_{(}(x)$, where n is the degree of approximation.

Obtain the canonical polynomials using the differential operator from the equation in STEP 1.

Apply the given boundary conditions on the assumed solution in STEP 2 to obtain (m) linear algebraic equations.

Substitute the approximate solution from STEP 2 into the problem in STEP 1.
collocate the results from STEP 5 at $x_{k}=a+\frac{(b-a) k}{N+2-m}, k=0(1) N+1-m$ to obtain ($N-m+1$) algebraic equations.
add the results from STEP 4 and STEP 6 to obtain two sets of $(n+1)$ system of equations.

Substitute the values of the constant coefficients into the approximate solution in STEP 2 for SCM

