
INSTITUTO SUPERIOR TÉCNICO, AUTONOMOUS SYSTEMS, PROJECT REPORT, DECEMBER 2015 1

EKF-BASED LOCALIZATION WITH LRF
Group 9 - Isabel Silva (73169), Renato Silva (73279), João Rosa (74149), Vítor Alveirinho (77003), José

Mendes (82258), Maciej Przydatek (83022)

Abstract—The goal of this project is to explore both the theory behind the Extended Kalman Filter and the way it was used to localize
a four-wheeled mobile-robot. This can be achieved by estimating in real-time the pose of the robot, while using a pre-acquired map
through Laser Range Finder (LRF). The LRF is used to scan the environment, which is represented through line segments. Through a
prediction step, the robot simulates its kinematic model to predict his current position. In order to minimize the difference between the
matched lines from the global and local maps, a update step is implemented. It should be noted that every measurement has associated
uncertainty that needs to be taken into account when performing each step of the Extended Kalman Filter. These uncertainties, or noise,
are described by covariance matrices that play a very important role in the algorithm. Since we are dealing with an indoor structured
environment, mainly composed by walls and straight-edged objects, the line segment representation of the maps was the chosen method
to approach the problem.

Index Terms—Extended Kalman Filter, Laser Rangefinder, Localization, Mobile-Robot

F

1 INTRODUCTION

Localization is a fundamental problem in mobile robotics.
In order for the robot to be autonomous, it needs to knows
its own pose in the environment. Localizing the robot only
with data provided by odometry is inaccurate since the
measurement noise is constantly accumulating. Taking this
into consideration, the robot will need to improve the infor-
mation about its pose, which can be achieved by comparing
the current environment scan with an already built global
map, subsequently resulting in a better pose estimation. The
environment is scanned with the aid of a Laser Rangefinder
(LRF).

The global static map can be obtained through SLAM
(Simultaneous Localization and Mapping), a process which
plays a crucial role in the execution of the Extended Kalman
Filter. This map is then subjected to a post-process that
transforms all its boundaries (mainly walls) into line seg-
ments, a method which was chosen to the detriment of
occupancy grids that divide the environment in cells. Since
the environment is mainly composed by straight lines, the
latter method would be computationally less efficient and
therefore not the best option. To extract the line segments
from the map, a method of Least Squares was chosen.

The Extended Kalman Filter provides optimal estimates
for non-linear systems, relying on the input and output-
noise covariance matrices of the process. As a matter of
fact, to obtain estimations of the robot pose is to solve a
non-linear problem. This localization problem can be split
in two phases: the Prediction Step and the Update Step.
The Prediction Step of the EKF is performed by simulating
the kinematic model of the robot. The standard deviation of
each of the wheels’ angular speed of the robot is estimated
as being proportional to the wheels’ angular speed. In the
Update Step of the EKF, the main objective is to correct the
pose of the robot by subtracting the parameters of matching
lines from local and global maps. For this we need to find
the line segments from both the local and global maps,

applying a matching procedure, where the most similar
local and global line segments are paired if the difference
is below a threshold.

The remainder of the paper is organized as follows. In
Section 2, we give a brief introduction on what is ROS
and how it was used in the context of our project. Section
3 describes how the implemented localization algorithm
works. Experimental results of the algorithm are shown and
discussed in Section 4. Finally, we state our conclusions in
Section 5.

2 USING ROS
The Robot Operating System (ROS) is a set of software
libraries and tools that help in building robot applications.
Its modularity, extensibility and standardization allow
system designers to cooperate flawlessly, while working
separately. It can be used in many applications starting at
industrial-type robotic manipulators, going through mobile
platforms, such as wheeled autonomous vehicles or aerial
multicopters, and ending at social and humanoid robots.

ROS consists of 4 main elements:

• Roscore - main program, which creates basic frame-
work common for all modules;

• Nodes - modules, which perform specific tasks;
• Topics - allow nodes to communicate between each

other;
• Parameter Server - set of values, which can be read,

set or deleted by every node.

The work was conducted using Adept MobileRobots
PIONEER 3-AT. In order to accomplish the task, several
packages containing desired nodes were used, listed as
follows:

• rosaria - written and maintained by Adept Mo-
bileRobots. Allows to establish connection between

INSTITUTO SUPERIOR TÉCNICO, AUTONOMOUS SYSTEMS, PROJECT REPORT, DECEMBER 2015 2

ROS and PIONEER 3-AT, send commands to wheels
and read robot’s state;

• sicktoolbox_wrapper - performs communication
with SICK LMS200 Laser Rangefinder, providing cur-
rent environment scans;

• gmapping - used to implement SLAM (Simultane-
ous Localization and Mapping), and therefore to
obtain the global static map needed for the imple-
mentation of the EKF algorithm;

• map_server - tool used to manipulate the map
obtained by the gmapping package;

• rosaria_client and teleop_twist_keyboard
- allow to easily control the robot’s linear and angular
velocities using the keyboard;

• rviz - used to visualize the map, the robot estimated
position and orientation, path and laser scans;

• tf - manages multiple coordinate frames transitions
during program execution.

2.1 Obtaining the Maps

In order to obtain the map, four packages were used:
rosaria, sicktoolbox_wrapper, gmapping and rviz,
to visualize the process. After setting up the nodes, the robot
was driven over the available area. The gmapping package
performed the SLAM process and, while generating the
map, was sending it to the map topic. After closing the
loop in the area, the finished map was saved using the
map_server map_saver command-line tool. Then, it was
converted to an ASCII text file with the values 0, represent-
ing free space , 100, representing occupied space and −1,
for unknown area, and finally loaded to the main program
for feature extraction.

2.2 Transform Configuration

In order to visualize the final process of the robot lo-
calizing itself on a map, a rviz node was used. To
simultaneously show the map, robot localization based
on odometry, localization based on EKF and laser scans
on one referential frame, a coordinate transition was im-
plemented. This should be done using tf node and
its tf.TransformBroadcaster() method. Several few
transform broadcasting nodes were created, to manage
such dependencies as laser-to-robot, robot-to-odometry and
odometry-to-map frame transitions. An enormous advan-
tage of the tf tool is the fact that the transitions have
to be specified only once and then the node manages all
calculations on itself.

3 LOCALIZATION ALGORITHM

The system of coordinates used is illustrated in Fig. 1.
xGyGzG forms the global referential that is equal to the
referential of the robot xRyR in his initial position. xp(k) =
[xr(k), yr(k), ϕr(k)]

T denotes the robot’s pose with respect
to the global coordinates.

Fig. 1. Robot’s pose according to the global coordinates.

3.1 Prediction Step
The robot’s pose is predicted by simulating the discrete
kinematic model of the robot

xp(k + 1) = f(xp(k),u(k)) :

xr(k + 1) = xr(k) + T
R

2
(ωR(k) + ωL(k)) cos(ϕr(k)),

yr(k + 1) = yr(k) + T
R

2
(ωR(k) + ωL(k)) sin(ϕr(k)),

ϕr(k + 1) = ϕr(k) + T
R

L
(ωR(k)− ωL(k)),

(1)

where T is the sampling time, R denotes the radius of each
wheel and L denotes the distance between the two front
wheels. u(k) = [ωR(k), ωL(k)]

T is the input vector where
ωR(k) and ωL(k) are measurements of the rotational speed
of the left and right wheels, respectively, at the time kT .

Let ωRc
(k) and ωLc

(k) be the rotational speeds of the
left and right wheels, which yields a correct estimation of
the robot’s pose xp(k) (Eq.1). The error for the rotational
speeds of the corresponding wheels ωRn

(k) and ωLn
(k) can

then be defined as

ωR(k) = ωRc(k) + ωRn(k), ωL(k) = ωLc(k) + ωLn(k), (2)

n(k) = [ωRn
(k), ωLn

(k)]T . (3)

The error vector n(k) above captures the uncertainties of
the odometry model and is assumed to be zero mean and
Gaussian noise.

The covariance matrix of this vector is the input-noise
covariance matrix Q(k) for the EKF, defined as

Q(k) =

δω2
R(k) 0

0 δω2
L(k)

 . (4)

The parameter δ in the covariance matrix above was
estimated experimentally, as shown in Section 4.

For each time we compute the prediction step of the EKF,
we first calculate the rotational speed of the wheels ωR(k −

INSTITUTO SUPERIOR TÉCNICO, AUTONOMOUS SYSTEMS, PROJECT REPORT, DECEMBER 2015 3

1) and ωL(k−1) using (Eq. 1), where xp(k−1) and xp(k) are
given by odometry at times (k − 1)T and kT , respectively.
After this, we can use the results to compute the prediction
step.

The prediction step gives us the state prediction x̃p(k)
and the covariance matrix of the state prediction error P̃(k).

x̃p(k) = f(x̂p(k − 1),u(k − 1)), (5)

P̃(k) = A(k)P̂(k − 1)AT (k) + W(k)Q(k − 1)WT (k),

Aij(k) =
∂fi

∂x̂pj(k − 1)

∣∣∣∣
(x̂p(k−1),u(k−1))

,

Wij(k) =
∂fi

∂nj(k − 1)

∣∣∣∣
(x̂p(k−1),u(k−1))

, (6)

where x̂p(k − 1) denotes the state estimate at time instant
k − 1 based on all the measurements collected up at the
time. P̂(k− 1) is the covariance matrix of the corresponding
estimation error.

3.2 Obtaining Line Parameters
3.2.1 Clustering Points of the Global Map
In order to obtain the parameters for the lines of the global
map, it is necessary to analyse the matrix obtained by SLAM
and create a cluster of points for each line that is on the
map. Using the Corner Harris Detection algorithm [2] we
can detect all the corners of the map. We know that each
corner belongs, at least, to one line. So, if we check the
neighbourhood of the corner in all the directions, we can
create a cluster of all the points that belong to one line. Each
point is analysed by the distance from the previous point
in the cluster to check if it is a good candidate to the line.
The difference between the slope of the line composed by all
the points that are already in the cluster and the slope of the
line composed by the corner and the candidate point should
be below a small threshold. If these conditions are true, the
point is clustered.

3.2.2 Clustering Points of the Local Map
We need to know the lines that the robot is "seeing" in each
cycle of the EKF in order to update the pose of the robot. For
that, we use the data received from the LRF, which consists
of a set of distances d between the laser and an obstacle, for
a given set of angles θ ∈ [−π2 ,

π
2]. We transform each pair of

distance and angle to a point (x, y) in the robot frame (Fig.
2) as in

xi = di sin(−θi), yi = di cos θi. (7)

It is important to notice that in y axis the angle θ is zero,
on the positive x axis θ = −π2 and in the negative x axis
θ = π

2 .
To store the points in clusters we need to analyse if

the distance between two consecutive points is bellow a
threshold Tdpoints and also if the difference between the
angle of those two points and the angle of the line composed
by the points that are already stored in the cluster is bellow
a threshold Tapoints . If these two conditions are verified
the point is clustered. If these conditions are not fulfilled

Fig. 2. Relation between the distances di, angle θi and the point (xi, yi),
in the referential of the robot

it means that the point does not belong to the cluster and
the cluster is finalized. Then a new cluster is created and
we store this last point in it. When a cluster is finalized, if
a number of points that belongs to it is above a threshold
nmin, we create a line. If not, the cluster is ignored.

3.2.3 Line Parameters
At this point we already know clusters of points (x, y) that
form lines in both global and local maps. Now we need to
find the parameters of the line equation in the normal form
(Fig. 3), for each cluster of points.

For the local map we want to obtain the parameters ψi
and ri, for each line i, in the robot referential

xR cosψi + yR sinψi = ri, (8)

and for the global map we want to obtain the parameters αj
and pj , for each line j, in the global referential.

xG cosαj + yG sinαj = pj . (9)

To find this parameters we used the LSQ method.

Fig. 3. The parameters (pj , αj) of the lines of the global map, according
to the global coordinates. And the parameters (ri, ψi) of the lines of the
local map according to the robot coordinates.

Least Squares Method
We will be explaining this method for the parameters ψ
and r, but all the parameters stated in (Eq.8 and 9) can be
obtained in the same way.

If a cluster of points belongs to a vertical line we will not
be able to apply this method since the value of the slope of
the line will be infinite. To prevent this, we first calculate

INSTITUTO SUPERIOR TÉCNICO, AUTONOMOUS SYSTEMS, PROJECT REPORT, DECEMBER 2015 4

the approximated value of the slope for each line using the
first and last points of the cluster. If the absolute value of
the slope is bigger than 1, then we apply a rotation of −π2 to
all the points of the cluster. This is done by exchanging the
vector x with the vector y and y with the vector -x. In the
end of the method we need to apply a rotation of π

2 to ψ to
obtain the correct line parameters.

We then apply the following equations,

θ̂ = [k̂l, ĉl]
T = (UTU)−1UTy, U =

[
x(1) · · · x(n)
1 · · · 1

]T
,

y = [y(1), · · · , y(n)]T ,
(10)

where n is the number of points of the cluster; ĥl and ĉl
correspond to the line parameters of the line equation in the
form y = klx+ cl. Now we obtain ψ and r with

r(k̂l, ĉl) =
ĉl√
k̂2l + 1

sign(ĉl), (11)

ψ(k̂l) = arctan 2

 sign(ĉl)√
k̂2l + 1

,
−k̂l√
k̂2l + 1

sign(ĉl)

 , (12)

Estimation of Line Parameters Covariances

For the update step of the EKF we will need to compute the
covariance matrix Ri that contains the variance of the line
parameters ri and ψi and the covariances between them.

Ce = var(y(j))(UTU)−1 =

 var(k̂l) cov(k̂l, ĉl)

cov(k̂l, ĉl) var(ĉl)

 ,
(13)

var(y(j)) =

∑n
j=1(y(j)− ŷ(j))2

n− 1
, ŷ(j) = k̂l · x(j) + ĉl (14)

where var(y(i)) is the vertical error variance of the line-
segment points (x(j),y(j)) (j=1,...,n) according to the estimated
line with the parameters k̂l and ĉl. Knowing the variances
and covariances between the parameters k̂l and ĉl (Eq. 13),
we can now calculate the variances and covariances between
the parameters r and ψ as follows.

var(ψ) = K2
ψkvar(k̂l),

var(r) = K2
rkvar(k̂l) +K2

rcvar(ĉl) + 2KrkKrc · cov(k̂l, ĉl),
cov(r, ψ) = KrkKψkvar(k̂l) +KrcKψk · cov(k̂l, ĉl),
cov(ψ, r) = cov(r, ψ),

(15)
where

Krk = −ĉlk̂l√
k̂2l +1(k̂2l +1)

sign(ĉl), Krc =
sign(ĉl)√
k̂2l +1

, Kψk = 1
ĉ2l +1

.

(16)

3.3 Matching Line Segments
The parameters of the lines of the global map, α and p (Eq.
9), are all collected in a vector G

G = [p1, α1, ..., , pnG
, αnG

]T , (17)

where nG is the number of lines of the global map. The
vector G is computed once and is always the same since the
global map is static.

The parameters of the lines of the local map, ψ and r
(Eq. 8), are all collected in the vector z, (k) (Eq. 18), which
are based on the current LRF scan,

z(k) = [r1, ψ1, ..., , rN , ψN]T . (18)

The robot’s pose correction is based on the difference
between the line parameters of the local environment map
and the line parameters of the global map, transformed into
the robot’s coordinates. This transformation is given by

Cj = pj − x̃r(k) cosαj − ỹr(k) sinαj , (19) r̂i
ψ̂i

 = µi(x̃p(k), pj , αj)

=

 |Cj |

α− (ϕ̂r − π
2) + (−0.5sign(Cj) + 0.5)π

 ,
(20)

where x̃p (Eq.5) denotes the prediction of the robot’s pose.
The observation model can then be defined by the vector

µ(x̃p(k)) = [µ1(x̃p(k), p1, α1)
T , ..., µnG

(x̃p(k), pnG
, αnG

)T]T

(21)
For each cycle we then want to find the lines of the global

map that correspond to each line of the local map. For this
we need to find the line of the global map (transformed
into the robot coordinates) that is closest to each line of the
local map. We first obtain a point in Cartesian coordinates
for each line. For the lines of the global map we use Eq.22
and for the local lines we use Eq.23, for j = 1, ..., nG and
i = 1, ..., N .

xµj
= cos ψ̂j r̂j , yµj

= sin ψ̂j r̂j , (22)

xzi = cosψiri, yzi = sinψiri (23)

With this we compute a matrix v(k) ∈ R2nG×N

vij(k) =
√
(xzi − xµj

)2 + (yzi − yµj
)2. (24)

For each column of v(k) we find the line that contains
the minimum value, making it possible to obtain pairs of
lines: each local line has an associated global line. With this
pairs we compute a matrix V (k)

V (k) =

r1 − r̂min1

ψ1 − ψ̂min1

...
rN − r̂minN

ψN − ψ̂minN

. (25)

We also compute a matrix µminim(x̃p(k))

µminim(x̃p(k)) = [r̂min1
, ψ̂min1

, ..., r̂minN
, ψ̂minN

]T . (26)

INSTITUTO SUPERIOR TÉCNICO, AUTONOMOUS SYSTEMS, PROJECT REPORT, DECEMBER 2015 5

Matching Step
We now have N pairs of lines but we have to analyse which
pairs are valid. This is called matching and is necessary
because some lines may correspond to moving objects of
the environment. Since our map is composed only by static
objects, we are going to find a pair but not a match, because
the lines from the local map do not really correspond to the
paired lines from the global map. The valid pairs can be
found by applying

ri − r̂mini
< Tr

and (27)

ψi − ψ̂mini
< Tψ

All the differences between pairs of lines that were above
the threshold are discarded. We then compute a new matrix
Vmatch(k) that is very similar to the matrix in Eq. 25 but
contains only the differences between the line segments that
passed the matching step.

We also compute a new matrix µmatch(x̃p(k)) that is
very similar to the matrix in Eq. 26 but contains only the
parameters of lines that were matched.

3.4 Update Step

At this point we only need to compute the update step

x̂p(k) = x̃p(k) + K(k)Vmatch(k),

P̂(k) = P̃(k)−K(k)H(k)P̃(k),

K(k) = P̃(k)HT (k)(H(k)P̃(k)HT (k) + R(k))−1, (28)

Hij(k) =
∂µmatchi

∂x̃pj(k)

∣∣∣∣
x̃p(k)

,

where x̂p(k) denotes the state update; P̂(k) denotes the
covariance matrix of the state update error; K(k) is the
Kalman gain; and R(k) is the output-noise covariance ma-
trix associated to the vector z(k). R(k) has a block-diagonal
structure, where the i-th block is given by

Ri(k) =

[
var(ri) cov(ri, ψi)

cov(ψi, ri) var(ψi)

]
(29)

with var(ri), cov(ri, ψi), cov(ψi, ri) and var(ψi) defined in
Eq. 15.

4 EXPERIMENTAL RESULTS

After the algorithm was implemented, we defined the
sampling time as T = 100ms, the distance between two
opposite wheels as L = 0.400m, the radius of the wheels as
R = 0.109m and δ = 0.01, in order to start testing the per-
formance of the EKF. The threshold values used to perform
clustering were Tdpoints = 0.15m and Tapoints = 0.30rad.
These two parameters were estimated based on visual-
izations of the data received from the Laser Rangefinder
SICKLMS200. To obtain line-segments from the clusters, the
minimum points required were nmin = 4. For the initial
position of the robot, the pose is the origin of the referential
and the orientation is ψ = π

2 .

Fig. 4. Global map of the fifth floor of the North Tower, obtained through
the SLAM package

Fig. 5. Representation of the trajectory made by the robot. The points in
blue are the values obtained with odometry. The points in green are the
values obtained with EKF, with small number of matched lines.

Fig. 6. Representation of the trajectory made by the robot. The points
in blue are the values obtained with odometry. The points in green are
the values obtained with EKF, with a representative number of matched
lines.

INSTITUTO SUPERIOR TÉCNICO, AUTONOMOUS SYSTEMS, PROJECT REPORT, DECEMBER 2015 6

The first step in a localization problem is to create a
visual representation of the environment where the robot is
in. For that, it was created a map using the SLAM package,
represented in Fig. 4.

To analyse the trajectory of the robot using EKF, we
did two experiments. The first one with a small number
of matches and the second one with a considerable number
of matches.

For the first experiment, as we can see in Fig. 5, the
matching process did some small corrections, but the num-
ber of matched lines was rather small. In the cases where
there are no matched lines, the value of the state update is
the same as the state prediction. So, in this case, the update
pose was close to the odometry values. It should be noted
that we are in presence of a case where the odometry values
have a low error. In the case of Fig. 5, the covariance matrix
stays almost static, which is a result of the small number of
matched lines.

If the number of matches increases significantly, it means
that the covariance matrices are being updated and the
corrections made to the trajectory are being done, meaning
that the knowledge of the robot’s current position is close to
reality.

We then changed the values of the thresholds for the
matching algorithm to Tr = 0.20m and Tψ = 0.5rad and
obtained the values presented in Fig. 6, with a good number
of matches. The path of the robot was very closed to the real
trajectory in the fifth floor. We note that we are in a case
that the odometry values have a high error. Of course, the
values of the update state are not perfect in some situations.
One of the reasons for this to happen is of environmental
nature where, for example, an open door might be closed in
the global map, contrary to the local scan, or some people
might be walking in front the laser. In both of this cases,
the robot can change his location but after a while the EKF
value can converge to a better one.

Another problem that the robot faces is the odometry. At
the beginning of the robot’s trajectory, the position given by
the EKF and the odometry are very close, but after some
time the odometry is completely wrong, which could be a
problem in regards to the robot’s localization. With the laser
visualizations and the previous location knowledge, repre-
sented not only in the position but also on the covariance
matrices, the robot is able to correct those deviations and
almost ignore the unreliable data.

The thresholds for the matching algorithm are Tr =
0.20m and Tψ = 0.5rad.

5 CONCLUSION

In this paper, an EKF algorithm is implemented in order to
achieve the most accurate localization of a mobile robot with
four wheels. First, it is necessary to linearise the kinematic
model of the robot to perform the prediction step of the
EKF. To perform the matching step, it is necessary to extract
the line parameters from the global map of the fifth floor in
the North Tower of Instituto Superior Técnico and extract
the data from the Laser Rangefinder and compare both lines
created using the LSQ method. If the lines from the global
map are similar enough to the lines that the robot observes,
then the matching can be done and the robot will know that

the line he observes is in a determined position in the global
map. Using that information, the update step is performed,
updating the position of the robot and also updating the
covariance matrices.

During the whole project, we faced several challenges.
All of the algorithm was implemented using Python and the
Robot Operating System, which were tools hard to grasp for
us at the start, since none of the elements of the group knew
them before the beginning of the academic term. Another
problem arised during the creation of clusters of points from
the global map. Using the Corner Harris detection method,
the lines created were not perfect. So, in order to achieve the
maximum similarity, we did the extraction of the first and
last points of each line by observing the map. In this report,
we did not present the values of the covariance matrices,
but we will present them in the poster.

REFERENCES

[1] L. Teslic, I. Škrjanc, G. Klančar, EKF-Based Localization of a Wheeled
Mobile Robot in Structured Environments J Intell Robot Syst, 2010

[2] C. Harris, M. Stephensčar, A combined corner and edge detection
Alvey Vision Conference, 1988

[3] P. Lima, Notas das Aulas Teóricas , Lisboa - Instituto Superior
Técnico, 2015

