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Abstract

Identifying whether a degree matrix has an edge-disjoint realization is an NP-hard problem. In
comparison, identifying whether a tree degree matrix has an edge-disjoint realization is easier, but the
task is still challenging. In 1975, a sufficient condition for the tree degree matrices with three rows has
been found, but the condition has not been improved since. This paper contains an essential part of the
proof which improves the sufficient condition.

0 Introduction

Let V = {v1, v2, · · · , vn} be a set of vertices.

Consider the corresponding tree degree matrix

D =

D1

D2

D3

 =

d1,1 d1,2 · · · d1,n
d2,1 d2,2 · · · d2,n
d3,1 d3,2 · · · d3,n

 ,

where di,j represents the degree of the vertex vj in the i-th tree. Also, let

S =
[
d1,1 + d2,1 + d3,1 d1,2 + d2,2 + d3,2 · · · d1,n + d2,n + d3,n

]
.

Since D1, D2, D3 are tree degree sequences,
∑n

j=1 di,j = 2n− 2 for i = 1, 2, 3.

In 1975, Dr Sukhamay Kundu published a paper with the following theorem.

Theorem 0.1. If minnj=1{d1,j + d2,j + d3,j} = 5, each tree degree sequence is graphical, and the sum of any
two tree degree sequences is graphical, then the matrix has an edge-disjoint tree realization.

In other words, when the conditions are satisfied, it is possible to translate the three tree degree sequences
D1, D2 and D3 into a graph such that each degree sequence is translated to a tree (has a tree realization),
and no two vertices are connected by more than one edge (is edge-disjoint).[1]

To show whether a tree degree sequence is graphical (can be translated into a graph), the following inequality
is used.

Theorem 0.2 (Erdős-Gallai, 1960). A sequence of non-negative integers d1 ≥ d2 ≥ · · · ≥ dn can be
represented as the degree sequence of a finite simple graph on n vertices if and only if d1 + d2 + · · · + dn is
even and

k∑
i=1

di ≤ k(k − 1) +

n∑
i=k+1

min(di, k)

holds for every k in 1 ≤ k ≤ n.
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The approach Dr Kundu takes in proving his theorem is mathematical induction. The main part of his proof

involves showing that if D contains a column of

22
1

 (with respect to symmetry of rows) then we can remove

this column and subtract 1 from a high-degree entry (that is, an entry that is greater than 1) in the third
row to construct D′, and if D′ has an edge-disjoint tree realization, then we can construct an edge-disjoint
tree realization of D from that of D′.

In the research project I conducted with Dr. Istvan Miklos and Yuhao Wan, we were working on matrices
with minnj=1{d1,j + d2,j + d3,j} = 4. Unfortunately, the routine induction Dr. Kundu utilized does not work
when the minimum column sum decreases from 5 to 4, as there are numerous pathological cases.

In this paper, We will investigate one class of those pathological cases, which is the set of matrices that satisfy
the following conditions:

• n ≥ 7

• minnj=1{d1,j + d2,j + d3,j} = 4

•

d1,1d2,1
d3,1

 =

 1
1

n− 3


•

d1,nd2,n
d3,n

 =

11
2


• There is exactly one entry of n− 3, which is d3,1.

The reason why the matrices that satisfy the conditions above are pathological is if we remove the last
column, we need to subtract 1 from either d1,1 or d2,1, but then D′ will have an entry of 0, so D′ is not a
tree degree matrix. More information about routine induction is contained in the next subsection.

Specifically, we will see whether certain tree degree matrices are reducible (able to perform induction by
reducing D to D′). Our aim is to show that there are only finitely many irreducible cases, because if this is
so, it is possible to check these irreducible cases using a computer program, and all other matrices can be
constructed by performing a set of expansions (the process of constructing D from D′) from one of these
base cases.

Routine Induction

The following is the procedure of reducing D to D′ using routine induction when there is a column

11
2

 with

respect to symmetry of rows.

1. Remove the column

11
2

.
2. Choose a high-degree entry from the first row (d1,j such that d1,j > 1) and subtract the entry by 1.

3. Choose a high-degree entry from the second row and a column different from the j-th column (d2,k
such that d2,k > 1 and j 6= k) and subtract the entry by 1.

4. The resulting matrix is D′

Suppose D′ has an edge-disjoint tree realization. Introduce the n-th column (hence, n-th vertex, or vn). vn
connects to vj via the first tree, and connects to vk via the second tree. In the third tree, find an edge which
connects va to vb (a, b 6= j, k) and place vn in between (so that va and vn are adjacent and vn and vb are
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adjacent, while va and vb are no longer adjacent). We will call the step of placing vn between va and vb
Archer’s Bow . Once this process is complete, we can verify that D has an edge-disjoint tree realization from
the fact that D′ has an edge-disjoint tree realization (See Fig 1 for an example).

Fig 1. An example of the routine induction

1 Three columns with the sum n− 1

If D has three columns with the sum n− 1, D is not reducible. This is because if the minimal sum of each
column is 4 (hence, every entry in S is at least 4), no entry of S will be 3, which means D will not have any

column of

11
1

. This means we can subtract at most two entries of S by 1, so we are still going to have at

least one column with the sum n− 1, which violates the Erdős-Gallai inequality for k = 1.

Proposition 1.1. If D has three columns with the sum n− 1, then D has at most 9 columns, so there are
finitely many such matrices that cannot be reduced.

Proof. Since the minimum sum of each column is 4, S will look like the following:

S =
[
n− 1 n− 1 n− 1 ≥ 4 ≥ 4 · · · ≥ 4

]
Hence, the sum of all the entries in S will be

6n− 6 ≥ 3(n− 1) + 4(n− 3)

= 7n− 15

which means, n ≤ 9.
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2 Two columns with the sum n− 1

If we can find a column

12
1

 or

21
1

, we can reduce D to D′ using the same method as the routine induction.

This will be shown later in the section where we show that if there are at most two columns with the sum

n− 1, then we can always reduce D by removing the column

12
1

 or

21
1

.

Proposition 2.1. If D has exactly two columns with the sum n− 1, and no columns of

12
1

 or

21
1

, then
D has at most 8 columns, so there are finitely many such irreducible matrices.

Proof. Note that the third tree degree sequence is

D3 =
[
n− 3 1 1 · · · 1 2 2

]
,

with respect to symmetry of columns.

Since we cannot find any column of

12
1

 or

21
1

, each column with the third entry 1 has the sum of at least

5.

Therefore, when a column with the sum of n− 1 (suppose, without loss of generality, that this is the second
column) has d3,2 = 1, D looks like the following:

 1 d1,2 d1,3 d1,4 · · · d1,n−1 1
1 d2,2 d2,2 d2,4 · · · d2,n−1 1

n− 3 1 1 1 · · · 2 2


S =

[
n− 1 n− 1 ≥ 5 ≥ 5 · · · ≥ 4 4

]
Then the sum of the all the entries in S is

6n− 6 ≥ 2(n− 1) + 5(n− 4) + 2 · 4
= 7n− 14

Hence, n ≤ 8.

In the case of d3,2 = 2, D looks like the following:

 1 d1,2 d1,3 d1,4 · · · d1,n−1 1
1 d2,2 d2,2 d2,4 · · · d2,n−1 1

n− 3 2 1 1 · · · 1 2


S =

[
n− 1 n− 1 ≥ 5 ≥ 5 · · · ≥ 5 4

]
Then the sum of the all the entries in S is
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6n− 6 ≥ 2(n− 1) + 5(n− 3) + 4

= 7n− 13.

Hence, n ≤ 7.

After looking at the two cases, we can conclude that n ≤ 8.

Induction on

12
1


Proposition 2.2. If D has at most two columns with the sum n − 1 and a column of

21
1

 (or

12
1

), then
D is reducible, and we can obtain D′ by removing the column of

21
1

 (or

12
1

).

Proof. Without loss of generality, suppose D has a column of

12
1

 - suppose this is the j-th column.

Then, in D, v1 connects to vj via an edge of the third tree.

Now, there must be another high degree (degree greater than 1) in D1 (suppose this is k-th column) so
suppose vj is connected to vk via an edge of the first tree in D. If there is another column with the sum n−1,
then the k-th column must be the column with the sum n − 1 (because otherwise, D′ will have a column
with the sum n−1, which violates the Erdős-Gallai Inequality of k = 1). We can always ensure that d1,k > 1
when the sum of k-th column is n− 1, because if d1,k = 1, then d2,k = n− 3, but we assumed earlier that we
require D to have at most one entry of n− 3.

Now, suppose we cannot find an edge in the second tree among V \ {v1, vj , vk} in D′ (so that even if there is
a tree realization of D′, we cannot perform the Archer’s Bowand conclude that D also has a tree realization).

Then, the other n− 3 vertices must be connected to vk in the second tree, so d2,k ≥ n− 3 (in D′). Since the
value of d2,k does not change when we expand D′ to D, d2,k ≥ n − 3 in D as well. This is a contradiction,
because we required D to have at most one entry of n− 3 (See Fig 2. for the diagram).

Hence, we can find an edge in the second tree among V \{v1, vj , vk}, so we can perform the routine induction
by removing the j-th column when there are at most 2 columns with the sum n− 1.

Therefore, if D has a column

21
1

 (or

12
1

) and at most two columns with the sum n−1, then D is reducible,

and D′ can be obtained by removing the column

21
1

 (or

12
1

).
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Fig 2. Reducing D to D′ when there is a column of

12
1



3 One column with the sum n− 1

Proposition 3.1. In D, there exists a column of

31
1

,
22
1

, or
12
1

, with respect to the symmetry of rows.

Proof. It suffices to show that among the columns which have d3,j = 1, there exists a column with the sum
4 or 5.

Suppose no columns with d3,j = 1 have the sum 4 or 5.

Since minnj=1{d1,j + d2,j + d3,j} = 4, all the columns with d3,j = 1 have the sum at least 6.

Hence, D will look like the following:

 1
1

n− 3 1 1 · · · 1 2 2


S =

[
n− 1 ≥ 6 ≥ 6 · · · ≥ 6 ≥ 4 ≥ 4

]
Then, the sum of all the entries in S is

6n− 6 ≥ (n− 1) + 6(n− 3) + 2 · 4 = 7n− 11

⇒ n ≤ 5

This is a contradiction, because we required D to have at least 7 columns.

Therefore, we must have a column with d3,j = 1 which is

31
1

,
22
1

 or

12
1

.
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Proposition 3.2. If D has exactly one column with the sum n − 1, then there are finitely many such
irreducible matrices.

Proof. According to Proposition 3.1, we can always find a column with

31
1

,
22
1

 or

12
1

, with respect to

the symmetry of D1 and D2.

Case 1: D has a column of

12
1

.
Then, D is reducible, according to Proposition 2.2.

Case 2: D has no columns of

12
1

, but has a column of

22
1

.
We will reduce D to D′ by removing this column (call this the j-th column).

Assume D′ has a realization. We will show that from this assumption, we can conclude that D has a
realization.

Connect vj with v1 via the third tree. (This means d3,1 will become n− 4 after the reduction.)

Now, let’s look at the second row.

The entries in the second row will be D2 =
[
1 d2,2 d2,3 · · · d2,j−1 2 d2,j+1 · · · d2,n−1 1)

]
.

Suppose we cannot find an edge in the second tree of the realization ofD′ among {v2, v3, · · · vj−1, vj+1, · · · vn−1, vn}
(hence, cannot perform the Archer’s Bow from D′).

This is a contradiction, because this means all these n − 2 vertices (and n − 2 ≥ 1) must connect to v1 via
the second tree, while d2,1 = 1.

Hence, we can find an edge in the second tree among {v2, v3, · · · vj−1, vj+1, · · · vn−1, vn}.

Suppose this edge connects va and vb.

Now, we will try to find an edge in the first tree of the realization of D′ which is not incident to v1, va nor vb.

Case 2a: d3,a = d3,b = 1

Note that we cannot have d2,a = d2,b = 1, because va and vb are connected by an edge in the second tree,
and we cannot connect two vertices with degrees 1 in a tree of n ≥ 7.

Hence, d2,a + d2,b ≥ 3.

Suppose we cannot find an edge in the first tree of the realization of D′ among V \ {v1, va, vb, vj} (hence,
cannot perform the Archer’s Bow from D′).

This means all the edges of the first tree of D′ are incident to v1, va or vb.

Then, d1,a + d1,b ≥ n− 4. (This is because in the first tree, even though vi ∈ V \ {v1, va, vb, vj} is connected
to v1, vi must also be connected one of va and vb, so all n− 4 vertices must somehow connect to va or vb).

Moreover, d1,a + d1,b ≥ n− 3, because in the first tree, one of the vertices of V \ {v1, va, vb, vj} must connect
to both da and db, as the first tree must be connected. (See Fig 3. for diagram)
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Fig 3. An example of D′ which satisfies the descriptions above

Therefore, the sum of all the entries in D will be

6n− 6 ≥ (n− 1) + d1,a + d1,b + d2,a + d2,b + d3,a + d3,b + 5(n− 5) + 2 · 4
≥ (n− 1) + n− 3 + 3 + 2 + 5(n− 5) + 8

= 7n− 16

This means n ≤ 10. Hence, we have finitely many such matrices D that are irreducible by removing

22
1

.
Case 2b: d3,a = 1, b = n

Suppose we cannot find an edge in the first tree of the realization of D′ among V \ {v1, va, vj , vn}.

This means all the vertices in V \ {v1, va, vj , vn} must connect to va in the first tree (as d1,1 = d1,n = 1,
so if any vertex connects to one of v1 and vn, or both, it must connect to va anyways, to make the graph
connected). Hence, d1,a ≥ n− 4.

Since d2,a ≥ 2 (because va is connected to vb in the second tree and d2,b = 1),

d1,a + d2,a + d3,a ≥ (n− 4) + 2 + 1 = n− 1,

which is a contradiction, as we required D to have exactly one column with the sum n− 1, and the column
sum cannot exceed n− 1.

Hence, in the first tree, we must be able to find an edge among V \ {v1, va, vj , vn}, so we can reduce D to D′

by removing the j-th column, which is

22
1

.
Case 2c: d3,a = 1, d3,b = 2 and b 6= n

Then, the situation is similar to Case 2a, but with d3,b = 2 instead of 1.

Hence,

6n− 6 ≥ (n− 1) + d1,a + d1,b + d2,a + d2,b + d3,a + d3,b + 5(n− 4) + 4

≥ (n− 1) + n− 3 + 3 + 3 + 5(n− 4) + 4

= 7n− 14

which means n ≤ 8.
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Therefore, there are finitely many matrices D which cannot be reduced by removing

22
1

.
Case 2d: d3,a = 2, b = n

Then, the case is similar to Case 2b, except d3,a = 2 instead of 1.

Therefore, d1,a ≥ n− 4, d2,a ≥ 2 and d3,a = 2, so da ≥ n, which is a contradiction.

Hence, if D has a column of

22
1

, then there are only finitely many such matrices that cannot be reduced by

removing this column.

Case 3: D has no columns of

22
1

 and

12
1

, but has columns of

31
1

.
Lemma 3.3. If D satisfies n ≥ 11 and has no columns of

22
1

 or

12
1

 (

21
1

 equivalently), then D must have

at least two columns of

31
1

 and two columns of

13
1

.

Proof. Assume that D has at most one column of

13
1

.
Now, since d1,1 + d2,1 + d3,1 = n− 1, the sum of the last n− 1 entries of S is 5n− 5.

Note that we cannot have more than 2 columns with the sum 4, because that means we will obtain a column

of

12
1

 (or

21
1

).
Therefore, we can have at most 2 columns with the sum 4, and this means we can have at most 5 entries of
S that are not 5; S is going to look either like:[

n− 1 6 6 5 5 · · · 5 4 4
]
,[

n− 1 7 5 5 5 · · · 5 4 4
]
,

or [
n− 1 6 5 5 5 · · · 5 5 4

]
.

Therefore, S will have at least n− 5 entries of 5.

Furthermore, if we look at D3, d3,1 = n − 3 and d3,n = 2, which means for all columns which satisfy
d1,j + d2,j + d3,j = 5, there are at least n− 5 columns which have d3,j = 1.

Then, since we don’t have any columns of

22
1

, for all j where d1,j + d2,j + d3,j = 5, d1,j = 1 or 3.

Since we have at most one column of

13
1

, the sum of the entries of D1 is
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2n− 2 ≥ (n− 6) · 3 + 6 · 1 = 3n− 12

⇒ n ≤ 10

and this is a contradiction to the original assumption.

Using a similar argument, we can conclude that if we have at most one column of

31
1

, we get a contradiction.

Hence, if D satisfies n ≥ 11 and has no columns of

21
1

 nor

22
1

, then D must have at least two columns of13
1

 and two columns of

31
1

.

For the matrices with n ≤ 10, there are finitely many matrices which have less than two columns of

31
1

 or

less than two columns of

13
1

, and hence irreducible using the method which will be outlined below.

Let us look at the four columns: two columns of

31
1

 and two columns of

13
1

. We will try to reduce D with

these four columns into D′ with two columns of

22
1

.
Suppose vw and vz are vertices that correspond to the columns of

31
1

 and vx, vy are vertices that correspond

to the columns of

13
1

. Now, consider (V \{vw, vx, vy, vz})∪{vs, vt}, where vs, vt are vertices that correspond
to columns of

22
1

. Suppose the tree degree matrix which corresponds to (V \ {vw, vx, vy, vz}) ∪ {vs, vt} is

called D′ (this means d3,1 would have decreased by 2, because D′ has 2 less columns than D, and we still
need d3,1 to be 3 less than the number of columns).

Assume D′ has a realization. Suppose T1 is a subtree that contains a path in the first tree from vs to vt, T2

is a subtree of the first tree that is connected to vs which is not T1, and T3 is a subtree of the first tree that
is connected to vt which is not T1.

Also, Suppose T4 is a subtree of the second tree that contains a path from vs to vt, T5 is a subtree of the
second tree that is connected to vs which is not T4, and T6 is a subtree of the second tree that is connected
to vt which is not T4. Then, we can construct the realization as below:
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T2 vs vt T3

T5 T6

T1

T4

Fig 4. An outline of a realization of D′

Then, we can expand D′ to D by using the construction below:

T2 vw vx vy vz T3

T5 T6

T1

T4

Fig 5. An outline of a realization of D

For the third tree in D′, suppose vs was connected to va and vt was connected to vb.

Then, in D, connect vw with va, vy with vb and connect vx and vz with v1 (so d3,1 will increase by 2).

Hence, if D′ has a realization, then D also has a realization, so we can reduce D by converting four columns

into two columns of

22
1

.
As an example, consider the following matrix:

D =

1 2 3 3 1 3 1 3 1 1 1
1 3 2 1 3 1 3 1 3 1 1
8 1 1 1 1 1 1 1 1 2 2


The process of reducing D to D′, and constructing a realization of D from that of D′ is shown below in Fig
6.
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Fig 6. Reducing D to D′ in Case 3

4 Conclusion

We showed that if D is a tree degree matrix such that the first column is

 1
1

n− 3

, the last column is

11
2


and the minimum sum of each column is 4, then D can always be reduced to D′, with the exception of finitely
many pathological cases, so that if D′ has a tree realization, then so does D.

Other pathological cases have been dealt with by Yuhao Wan, and all the finite exception cases have been
checked by a computer program, which could not produce a counter example. Hence, with the help of the
results discovered by Dr Istvan Miklos, his computer code, Yuhao Wan, and the result shown in this paper,
we conclude the following.

Theorem 4.1. If minnj=1{d1,j + d2,j + d3,j} = 5, each tree degree sequence is graphical, and the sum of any
two tree degree sequences is graphical, then the matrix has an edge-disjoint tree realization.

This result is expected to be published on the arXiv in 2019.
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