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Chapter 1

Introduction to Groups

1.1 Basic Axioms and Examples

1. (a) This operation is not associative, since a ? (b ? c) = a− (b− c) = a− b+ c 6=
a− b− c = (a− b)− c = (a ? b) ? c.

1. (b) This operation is associative, since a ? (b ? c) = a + (b + c + bc) + a(b + c +
bc) = a + b + c + bc + ab + ac + abc = (a + b + ab) + c + (a + b + ab)c = (a ? b) ? c.

1. (c) This operation is not associative, since a ? (b ? c) =
a+ b+c

5
5 = a

5 + b+c
25 6=

a+b
25 + c

5 =
a+b

5 +c
5 = (a ? b) ? c.

1. (d) This operation is associative, since (a, b) ? ((c, d) ? (e, f )) = (a, b) ? (c f +
de, d f ) = (ad f + bc f + bde, bd f ) = (ad + bc, bd) ? (e, f ) = ((a, b) ? (c, d)) ? (e, f ).

1. (e) This operation is not associative, since a ? (b ? c) = ac
b 6=

a
bc = (a ? b) ? c.

2. The operation a ? b = a− b is clearly not commutative since a− b 6= b− a in
general.

The operation a ? b = a + b + ab is commutative, since a ? b = a + b + ab =

b + a + ba = b ? a.

The operation a ? b = a+b
5 is commutative, since a ? b = a+b

5 = b+a
5 = b ? a.

The operation (a, b) ? (c, d) = (ad + bc, bd) is commutative, since (a, b) ? (c, d) =

(ad + bc, bd) = (cb + da, db) = (c, d) ? (a, b).

1



1.1. Basic Axioms and Examples 2

Finally, the operation a ? b = a
b is not commutative, since a

b 6=
b
a in general.

3. Addition of residue classes in Z/nZ is clearly associative, since a + (b + c) =
a + b + c = a + b + c = a + b + c = (a + b) + c.

4. Multiplication of residue classes in Z/nZ is clearly associative, since a · (b · c) =
a · bc = abc = ab · c = (a · b) · c.

5. We have already shown that multiplication of residue classes in Z/nZ is asso-
ciative, and it is clear that the identity element is 1 if n > 1. However, if n > 1, then
the residue class 0 has no multiplicative inverse, since its product with every other
residue class of Z/nZ is 0. Therefore, Z/nZ is not a group under multiplication
of residue classes.

6. (a) Addition of rational numbers is associative, since a
b +

(
c
d +

e
f

)
= a

b +
c f+ed

d f = ad f+bc f+bed
bd f = ad+bc

bd + e
f =

( a
b +

c
d

)
+ e

f . Now let a
b and c

d be two ratio-

nal numbers in lowest terms with odd denominators. Their sum ad+bc
bd has an odd

denominator as well, since b and d are both odd. Remembering that odd integers
can only be divided by other odd integers, we find that the sum ad+bc

bd written in
lowest terms must have an odd denominator. The identity element is clearly 0

1 .
Finally, noting that every element a

b has an inverse − a
b in the set, we conclude that

this set is a group under addition.

6. (b) This set is not closed under addition (e.g., 1
2 + 1

6 = 2
3 , which has odd

denominator). This set cannot be a group under addition.

6. (c) This set is not closed under addition (e.g., 9
10 +

2
10 = 11

10 > 1). This set cannot
be a group under addition.

6. (d) This set is not closed under addition (e.g., 11
10 + (− 10

10 ) =
1

10 < 1). This set
cannot be a group under addition.

6. (e) This is the set of integers and half-integers. The sum of two integers is an
integer, the sum of two half-integers is an integer, and the sum of an integer and
a half-integer is a half-integer, so this set is closed under addition. The identity
element is clearly 0. Finally, each element a has an inverse −a in the set. Therefore,
this set is a group under addition.
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6. (f) This set is not closed under addition (e.g., 1
2 +

1
3 = 5

6 , which does not have
denominator 1, 2, or 3). This set cannot be a group under addition.

7. The operation ? is well-defined due to the fact that addition, subtraction, and
the greatest integer function are well-defined. It is also obvious that for any x, y ∈
R, x ? y ∈ [0, 1), so G is closed under ?. It is not hard to see that for x, y ∈ R,
[x + y] = [x] + [y] + [x− [x] + y− [y]]. Then the operation ? is associative, since

a ? (b ? c) = a ? (b + c− [b + c])

= a + b + c− [b + c]− [a + b + c− [b + c]]

= a + b + c− [b + c]− [a + b + c] + [[b + c]]− [a + b + c− [a + b + c]− [b + c] + [[b + c]]]

= a + b + c− [a + b + c]

= a + b + c− [a + b]− [a + b + c] + [a + b]− [a + b + c− [a + b + c]− [a + b] + [a + b]]

= a + b + c− [a + b]− [a + b + c− [a + b]]

= (a + b− [a + b]) ? c

= (a ? b) ? c

The identity element is clearly 0, since for any g ∈ G, g ? 0 = g + 0− [g + 0] =
g− [g] = g. Since 0 is the identity, it is its own inverse. If g > 0, the inverse of
g is 1− g, since g ? (1− g) = g + 1− g − [g + 1− g] = 1− [1] = 0. Note that
since 0 < g < 1, 0 > −g > −1 and therefore, 1 > 1 − g > 0, so 1 − g ∈ G.
Therefore, G is a group under ?. Finally, note that G is an abelian group under ?,
since a ? b = a + b− [a + b] = b + a− [b + a] = b ? a.

8. (a) Since multiplication in C is associative, we need only show that G is closed
under multiplication, that there exists an identity element, and that every element
has an inverse in G. If z1, z2 ∈ G, then there exist n1, n2 ∈ Z such that zn1

1 = zn2
2 = 1.

Then note that for the product z1z2, (z1z2)n1n2 = zn1n2
1 zn1n2

2 = 1n21n1 = 1 and
therefore, z1z2 ∈ G. Hence, G is closed under multiplication. The identity element
is clearly 1 and it is its own inverse. For any other element z ∈ G, we can show
that zn−1 ∈ G, since (zn−1)n = z(n−1)n = (zn)n−1 = 1n−1 = 1. It is easy to see that z
and zn−1 are each other’s inverses. Therefore, G is a group under multiplication.

8. (b) G is not a group under addition because it does not contain 0 and thus,
does not have an identity element.

9. (a) We are given that addition in R is associative. Observe that G is closed
under addition since for a1 + b1

√
2, a2 + b2

√
2 ∈ G, we have a1 + b1

√
2 + a2 +

b2
√

2 = (a1 + a2) + (b1 + b2)
√

2, which is an element of G because Q is closed
under addition. The identity element 0 + 0

√
2 = 0 is clearly in G. Finally, every
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element a + b
√

2 has an inverse −a− b
√

2 ∈ G, since if a, b ∈ Q, then −a,−b ∈ Q

as well. Therefore G is a group under addition.

9. (b) We are given that multiplication in R is associative. The product of any two
non-zero elements a1 + b1

√
2 and a2 + b2

√
2 is (a1a2 + 2b1b2)+ (a1b2 + a2b1)

√
2. The

product is non-zero and is clearly an element of G, since Q is closed under addition
and multiplication. Thus the non-zero elements of G are closed under multiplica-
tion. The multiplicative identity 1 + 0

√
2 = 1 is clearly a non-zero element of G.

Finally, each non-zero element a + b
√

2 has an inverse a−b
√

2
a2−2b2 , which is clearly a

non-zero element of G. Therefore, the non-zero elements of G form a group under
multiplication.

10. Let G be a finite group and M be the multiplication table of G. If G is abelian,
then for any two elements gi, gj ∈ G, gigj = gjgi. Consequently, Mij = Mji, and M
is therefore a symmetric matrix.

Now suppose that G’s multiplication table M is a symmetric matrix. Then for
any i, j, Mij = gigj = gjgi = Mji. Since gigj = gjgi for any i, j, we find that G is an
abelian group.

11. The orders of the elements are |0| = 1, |1| = 12, |2| = 6, |3| = 4, |4| = 3,
|5| = 12, |6| = 2, |7| = 12, |8| = 3, |9| = 4, |10| = 6, |11| = 12.

12. The orders are |1| = 1, |−1| = 2, |5| = 2, |7| = 2, |−7| = 2, |13| = 1.

13. The orders are |1| = 36, |2| = 18, |6| = 6, |9| = 4, |10| = 18, |12| = 3,
|−1| = 36, |−10| = 18, |−18| = 2.

14. The orders are |1| = 1, |−1| = 2, |5| = 6, |13| = 3, |−13| = 6, |17| = 2.

15. This is clearly true for any single element a1 ∈ G. Now assume that it
holds true for the product of any n elements a1, ..., an ∈ G. Consider the product
(a1...an+1) of n + 1 elements of G. We may write (a1...an+1) = (a1...an)an+1. Since
(a1...an) is a product of n elements of G, its inverse satisfies (a1...an)−1 = a−1

n ...a−1
1 .

Multiplying, we obtain (a1...an)−1(a1...an)an+1 = an+1. The inverse of this product
is simply a−1

n+1: a−1
n+1an+1 = a−1

n+1(a1...an)−1a1...an+1 = a−1
n+1...a−1

1 a1...an+1 = 1. Since
the product of a−1

n+1...a−1
1 and a1...an+1 is the identity, we find that a−1

n+1...a−1
1 =

(a1...an+1)
−1. By induction on n, we have the claim.
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16. Let x ∈ G and suppose x2 = 1. Then by definition of the order of x,
1 ≤ |x| ≤ 2. That is to say, |x| is either 1 or 2.

Now, suppose that |x| is either 1 or 2. This means that either x = 1 or x2 = 1.
But if x = 1, then x2 = 12 = 1. So either way, x2 = 1.

17. Let x ∈ G and suppose |x| = n for some n ∈ Z+. Then xn = x · xn−1 = 1.
xn−1 is clearly an element of G, since G must be closed under its group operation.
Since the product of xn−1 and x is the identity, we must have x−1 = xn−1.

18. Let x, y ∈ G. If xy = yx, then left multiplication of y−1 yields y−1xy = x.
Similarly, if y−1xy = x, then left multiplication of y yields xy = yx.

If y−1xy = x, then left multiplication of x−1 yields x−1y−1xy = 1. Similarly, if
x−1y−1xy = 1, then left multiplication of x yields y−1xy = x. Hence, the claim.

19. (a) Let x ∈ G and a, b ∈ Z+. Then xa+b = ∏a+b
i=1 x = ∏a

i=1 x ∏b
i=1 x = xaxb.

Furthermore, (xa)b = ∏b
i=1 xa = ∏ab

i=1 x = xab. That is to say, these are conse-
quences of the generalized associative law.

19. (b) This is really just a consequence of exercise 15, but we can prove it by
induction if you want. This is clearly true for a = 1, since (x)−1 = x−1. Suppose it is
true for all a ≤ n. Consider a = n+ 1, where we may write xn+1 = xn · x. Applying
(xn)−1 = x−n, we obtain x−nxn+1 = x−n · xn · x = x. To this, we may apply
x−1, yielding x−1 · x−n · xn+1 = x−1 · x−n · xn · x = x−1 · x = 1. This implies that
x−1 · x−n = x−(n+1) is the inverse of xn+1 (i.e., x−(n+1) = (xn+1)−1). By induction
on n, we have the claim.

19. (c) Since x−1 is also an element of G, we already have the proof for the case
where a and b are both negative. It is also obvious that the equations hold if at
least one of a = 0, b = 0, or a = b = 0.

For the case where a and b are of opposite sign, simply note that 1 · x = x = x · 1
so that we may insert arbitrary numbers of factors xx−1 or x−1x into the expansion
of any power of x. Then xa+b = xax−axa+b = xaxb (i.e., it is a consequence of the
generalized associative law). The equation (xa)b = xab in this case is just a con-
sequence of part (b) above or the generalized associative law for b < 0 or a < 0,
respectively.

20. For x ∈ G let |x| = n. Then xn = 1 = x−nxn. It follows that x−n = 1.
Furthermore, no positive integer k < n exists such that x−k = 1, for if there were
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such a k, then xk = xk · 1 = xk · x−k = 1. Since |x| > k, this is a contradiction.
Therefore, |x−1| = n. For a proof of the converse, simply switch x and x−1 above.

21. Let G be a finite group, and consider x ∈ G such that |x| = n, where n is
odd. Since, n is odd, there exists j ∈ Z such that j ≥ 0 and n = 2j + 1. We have
x2j+2 = x2j+1 · x = 1 · x = x. Writing k = j + 1 and noting that k ≥ 1, we have the
claim.

22. First, we show that (g−1xg)n = g−1xng. The claim is clearly true for n = 1.
Suppose it holds for all n ≤ k. Then for n = k + 1, we have (g−1xg)k+1 =

(g−1xg)kg−1xg = g−1xkgg−1xg = g−1xkxg = g−1xk+1g. By induction on k, we
have the claim.

Now, note that (g−1xg)|x| = g−1x|x|g = g−1g = 1, so that |g−1xg| ≤ |x|. Suppose
that there exists k < |x| such that (g−1xg)k = 1. Then 1 = gg−1 = g(g−1xg)kg−1 =

gg−1xkgg−1 = xk. This is a contradiction, so no such k exists and |g−1xg| = |x|.

In this proof, x and g were any two elements of G, so consider x = ab and g = a,
where a, b ∈ G. We find that |ba| = |a−1aba| = |g−1xg| = |x| = |ab|.

23. This is obvious. If |x| = n and n = st, for n, s, t ∈ Z+, then (xs)t = xst = 1.
There cannot be any positive integer k < t such that (xs)k = 1 because that would
imply that |x| 6= n. Therefore |xs| = t.

24. Let a and b be commuting elements of G. Clearly the equation holds for n = 1.
Now suppose it holds for n ≤ k and consider (ab)k+1. We have (ab)k+1 = (ab)kab =

akbkab = akabkb = ak+1bk+1, where we used the fact that a and b commute to obtain
the second-to-last equality. By induction on k, we have the claim for n ∈ Z+. The
equation obviously holds for n = 0 as well, since (ab)0 = 1 = 1 · 1 = a0b0.

For n < 0, we simply need to show that if ab = ba, then a−1b−1 = b−1a−1.
It is easy to see that (ab)−1 = b−1a−1 and (ba)−1 = a−1b−1. If ab = ba, then
1 = (ab)−1ab = (ab)−1ba. It follows from the uniqueness of (ba)−1 that b−1a−1 =

(ab)−1 = (ba)−1 = a−1b−1. Since a−1 and b−1 commute, the proof above can be
applied to them and therefore, (ab)n = anbn, ∀n ∈ Z.

25. Suppose x2 = 1, ∀x ∈ G. Consider any two elements a, b ∈ G, and note that
their product ab is also an element of G. Therefore, (ab)2 = abab = 1. However,
abba = 1 also, so abab = abba. Multiplying on the left by ba, we find that ab = ba.
Therefore, G is an abelian group.
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26. We are given that H is closed under ? and closed under inverses. Then for
any h ∈ H the product hh−1 = 1 must also be in H, so H contains the identity
element. Since ? is associative in G, it must also be associative in H. Therefore, H
is a group under ?.

27. Let H = {xn | n ∈ Z}, where x ∈ G. It is easy to see that H is closed under
the group operation of G, since xk · x` = xk+` for k, ` ∈ Z. It is also closed under
inverses, since (xk)−1 = x−k is in H for all k ∈ Z. The identity element x0 = 1 is
clearly an element of H. Finally, the group operation of G is associative on G so it
must also be associative on H. Therefore, H is a subgroup of G.

28. (a)

(a1, b1)[(a2, b2)(a3, b3)] = (a1, b1)(a2 ? a3, b2 � b3)

= (a1 ? (a2 ? a3), b1 � (b2 � b3))

= ((a1 ? a2) ? a3, (b1 � b2) � b3)

= (a1 ? a2, b1 � b2)(a3, b3)

= [(a1, b1)(a2, b2)](a3, b3)

28. (b) For any element (a, b) ∈ A× B, we have (a, b)(1, 1) = (a ? 1, b � 1) = (a, b)
and similarly for (1, 1)(a, b). Therefore, (1, 1) is the identity.

28. (c) For any element (a, b) ∈ A× B, we have (a−1, b−1)(a, b) = (a−1 ? a, b−1 �
b) = (1, 1) and similarly for (a, b)(a−1, b−1). Therefore (a−1, b−1) is the inverse of
(a, b).

29. Let A × B be an abelian group. Then for any (a1, b1), (a2, b2) ∈ A × B, we
have (a1 ? a2, b1 � b2) = (a1, b1)(a2, b2) = (a2, b2)(a1, b1) = (a2 ? a1, b2 � b1). Since
a1 ? a2 = a2 ? a1 and b1 � b2 = b2 � b1 for any a1, a2 ∈ A and b1, b2 ∈ B, both A and
B are abelian.

Now suppose both A and B are abelian. Then for any a1, a2 ∈ A and b1, b2 ∈ B,
we have a1 ? a2 = a2 ? a1 and b1 � b2 = b2 � b1. Now consider any two elements
(a1, b1), (a2, b2) ∈ A × B. Their product is (a1, b1)(a2, b2) = (a1 ? a2, b1 � b2) =

(a2 ? a1, b2 � b1) = (a2, b2)(a1, b1). Therefore, A× B is an abelian group.

30. For any two elements of the form (a, 1) and (1, b) in A× B, we have (a, 1)(1, b) =
(a ? 1, 1� b) = (1? a, b � 1) = (1, b)(a, 1), so they commute. Furthermore, (a, 1)(1, b) =
(1 ? a, b � 1) = (a, b). The order of (a, b) is the smallest positive integer n such that
(a, b)n = (a, 1)n(1, b)n = (an, 1)(1, bn) = (1, 1). It follows from the definition of
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|a| and |b| that |a| and |b| must divide all integers n satisfying (a, b)n = (1, 1) (see
exercise 35 if you are not convinced). The smallest positive integer n such that
|a| and |b| both divide n is by definition the least common multiple of |a| and |b|.
Thus, |(a, b)| is the least common multiple of |a| and |b|.

31. Let G be a finite group of even order. Let t(G) = {g ∈ G | g 6= g−1}. Note that
for any element x ∈ t(G), we necessarily have x−1 ∈ t(G). Pairing each element
with its inverse, we find that the order of t(G) must be even. It follows that the
order of G − t(G) is also even. Since 1 is its own inverse, it must be in G − t(G),
which implies that there exists at least one other element of G− t(G). This element
y must be its own inverse as well, meaning y2 = 1 or |y| = 2. So, G must contain
an element of order 2.

32. Let x ∈ G and |x| = n, for n < ∞. Suppose there exist integers k, ` < n such
that k 6= ` and xk = x`. Assume without loss of generality that k > `. Then it
follows that xk−` = 1. Since k − ` ∈ Z+ and k − ` < n, this would imply that
|x| 6= n. This is a contradiction, so the elements 1, x, ..., xn−1 must be distinct. Since
G is a group, all distinct powers of x are elements of G. We may conclude that
|x| ≤ |G|.

33. (a) Let x ∈ G and |x| = n, with n < ∞. Suppose that n is odd and that
xi = x−i for some i ∈ {1, 2, ..., n− 1}. This would mean that x2i = 1. By definition
of |x|, it must be true that 2i ≥ n. It is clear that for xk to be equal to 1, we must
have n|k (see exercise 35 if you are not convinced). Since 2i < 2n, we require that
2i = n. But this is impossible because n is odd! Therefore, no such i exists.

33. (b) Let x, n, i be defined as above. Suppose now that n = 2k for some k ∈ Z,
and that there exists 1 ≤ i < n such that xi = x−i. Then we would have x2i = 1
and 2i ≥ n. Since 2i < 2n, it must be that 2i = n = 2k (i.e., i = k).

Now suppose that n = 2k and consider i = k. x2k = x2i = 1 so xi = x−ix2i =

x−i · 1 = x−i.

34. Let |x| = ∞ for x ∈ G. Suppose that there are two integral powers xj, xk of x
such that j 6= k but xj = xk. Assume without loss of generality that j > k. Then it
must be that xj−k = 1. But by definition of |x|, since 0 < j− k < ∞, we would have
|x| 6= ∞. This is a contradiction, so all powers of x must be distinct.

35. Let |x| = n for x ∈ G and consider xk for k ∈ Z. The division algorithm states
that for any k, n ∈ Z with n > 0, there exist q, r ∈ Z such that k = qn + r, with
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0 ≤ r < n. Then we may write xk = xqn+r = xqnxr = (xn)qxr = xr. Therefore, all
integral powers of x are equal to one of the elements of {1, x, ..., xn−1}.

36. Let G = {1, a, b, c}with identity element 1, and assume that G has no elements
of order 4. Consider the product ab. Because neither a nor b are the identity, we
must have ab = 1 or ab = c. Suppose ab = 1. Then a2 6= 1 since the cancellation
laws would imply that a = b. It follows that |a| = 3 so that a2 = a2 · ab = a3 · b = b.
Now consider the product ac. Similarly to ab, we must have ac = 1 or ac = b.
However, ac 6= 1 or b = c by the cancellation law, and ac 6= b or a = c by the
cancellation law. We must conclude that ac /∈ G, which is absurd. Therefore,
ab = c. If a2 = b, then necessarily, a3 = 1. But then c = ab = a3 = 1, so we must
have a2 = 1, and thus, ac = b. Using similar reasoning, we find that bc = a, b2 = 1,
c2 = 1. By the proof of exercise 25, G is abelian. This is clearly the only possible
structure for G, so the group table is unique.
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1.2 Dihedral Groups

1. (a) The six elements of D6 are 1, r, r2, s, sr, sr2. We have |r| = |r2| = 3, |1| = 1,
and |s| = |sr| = |sr2| = 2. Note that because (sr)2 = 1 and (sri)2 = srisri =

sri−1sr−1ri = sri−1sri−1 = (sri−1)2 for all positive integers i, |sri| = 2 for all positive
integers i.

1. (b) The eight elements of D8 are 1, r, r2, r3, s, sr, sr2, sr3. We have |1| = 1, |r| =
|r3| = 4, |r2| = 2, and |s| = |sr| = |sr2| = |sr3| = 2.

1. (c) The ten elements of D10 are 1, r, r2, r3, r4, s, sr, sr2, sr3, sr4. We have |1| = 1,
|r| = |r2| = |r3| = |r4| = 5, and |s| = |sr| = |sr2| = |sr3| = |sr4| = 2.

2. Let x be any element of D2n that is not a power of r. Then x = srk for some
integer 0 ≤ k < n. Therefore, rx = rsrk = sr−1rk = srk−1 = srkr−1 = xr−1.

3. The outline of this proof was given in exercise 1.(a) for my convenience. Ele-
ments of D2n that are not powers of r are elements of the form srk for 0 ≤ k < n. It is
easy to see that s2 = (sr)2 = 1 using the given relations. Suppose that for all j < k,
|srj| = 2. Then we have (srk)2 = srksrk = srk−1rsrk = srk−1sr−1rk = (srk−1)2 = 1.
Induction on k gives the desired result.

It is also easy to see that s, sr generate D2n, since s · sr = r, so that rk = (s · sr)k and
srk = s(s · sr)k for all integers k.

4. Because |r| = n, all powers rj of r with 0 ≤ j < n are distinct. It follows that
|rk| = 2, since rk cannot possibly be the identity. It is obvious that z commutes with
all powers of r. To see that z commutes with s, note that (sz)2 = 1 by exercise 3.
However, (sz)(zs) = s(zz)s = ss = 1 = (sz)(sz), so by the cancellation law, zs = sz.
From there, it follows that z commutes with all elements srj that are not powers of
r, since zsrj = szrj = srjz.

It is easy to see that no other distinct power of r commutes with s (except, of
course, the identity). It follows from the fact that rjs = sr−j = srn−j, which we
can prove by induction. The relation rs = sr−1 holds. Suppose that ris = sr−i

for all i < j. Then rjs = rj−1rs = rj−1sr−1 = sr−j+1r−1 = sr−j, and by induction
on j, we have the claim. Since j 6= n− j unless j = k, no other distinct power of
r commutes with s. Furthermore, srj for any integer j does not commute with r,
since rsrj = sr−1rj = srj−1 6= srjr. Therefore, z is the only non-identity element of
D2n that commutes with all others.
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5. From exercise 4, we know that elements srj never commute with all elements
of D2n. Further, for a distinct non-identity power rj (we can restrict attention to
0 < j < n) of r to commute with s, we require 2j = n. Since n is odd, this
is impossible and no non-identity power of r commutes with s. It is clear, then,
that the only element commuting with all others is the identity, which does so by
definition.

6. Let x, y ∈ G such that |x| = |y| = 2. Let t = xy. Then note that (yx)t = yxxy =

1 so that t−1 = yx. Thus, tx = (xy)x = x(yx) = xt−1.

7. We have already shown that a, b generate D2n. The relation a2 = 1 is identical
to s2 = 1 and (ab)n = 1 is the relation rn = 1. From the relations b2 = 1 and a2 = 1,
we have (ab)−1 = ba, so that a(ab)−1 = ab2(ab)−1 = ab3a = aba. This is exactly the
relation sr−1 = rs. So the relations for s, r follow from those of a, b. To show the
converse, note that if rs = sr−1, then (sr)2 = srsr = ssr−1r = 1, which is exactly
the equation b2 = 1.

8. The cyclic subgroup generated by r has order n, since there are only n distinct
powers of r.

9. Consider two adjacent vertices 1, and 2. There are four positions that 1 can
be sent to via rotation. For each of those positions, 2 can be sent to any of three
positions. There are thus 12 positions that the adjacent vertices can be sent to and
|G| = 12.

10. Consider two adjacent vertices 1 and 2. There are 8 positions that 1 can be
sent to, and for each of these, there are 3 possible positions that vertex 2 can be
sent to, so |G| = 3 · 8 = 24.

11. Consider two adjacent vertices 1 and 2. There are 6 positions that 1 can be
sent to, and for each of these, there are 4 possible positions that 2 can be sent to,
so |G| = 6 · 4 = 24.

12. Labeling two adjacent vertices 1 and 2, note that there are 20 positions that
we can send 1 to, and for each of these, there are 3 positions that we can send 2 to.
Therefore, |G| = 20 · 3 = 60.

13. Labeling two adjacent vertices 1 and 2, there are 12 positions that 1 can be
sent to, and for each of these, there are 5 possible positions for 2. Therefore,
|G| = 12 · 5 = 60.
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14. As noted earlier in this chapter, {1} is a set of generators for Z under addition.

15. {1} is a generating set for Z/nZ under addition. The generator 1 satisfies the
relation 1

n
= 0.

16. If we identify x1 = r and y1 = s, then x2
1 = 1 is the relation r2 = 1 and

y2
1 = 1 is the relation s2 = 1 of D4. The relation (x1y1)

2 = 1 allows us to write
x1y1x1y1 = 1 = x1y1y1x1, from which it follows that x1y1 = y1x1. Since x1 = x−1

1 ,
we have x1y1 = y1x−1

1 , which is the relation rs = sr−1 of D4. It is easy to see that
the relations of x1, y1 also follow from those of r, s. Hence this group is D4.

17. (a) Let n = 3k. From the relation xy = yx2, we have x = yx2y = yxyx2 =

y2x4 = x4. Thus, |x| ≤ 3 and since |y| = 2, |G| ≤ 6. If n = 3k, there are no further
relations satisfied by the powers of x. So, |x| = 3 and |G| = 6. If we write x = r,
and y = s, we recover the relations r3 = s2 = 1 of D6. In addition, the relation
x3 = x · x2 = 1 reveals that x2 = x−1 so that the relation xy = yx2 is the relation
rs = sr−1 of D6.

17. (b) If (3, n) = 1, then there exist q, r ∈ Z with 0 < r < 3 such that n = 3q + r.
As before, we have x3 = 1, but now, we also have xn = x3qxr = xr = 1. It follows
that x3 = x3−r = xr = 1 and therefore, x = 1. There are then only two distinct
elements 1, y in X2n so |X2n| = 2.

18. (a) If v3 = 1, then applying the inverse v−1 gives the relation v2 = v−1.

18. (b) The product v2u3v may be written v2u3v = v2u2 · uv = uv · uv = uv ·
v2u2 = uv3u2 = u3. Making use of part (a), we have v−1u3v = u3 or u3v = vu3.

18. (c) Since u4 = 1, it is easy to see that u9 = u. Applying v, we have vu9 = vu,
but since v commutes with u3, vu = vu9 = v · u3 · u3 · u3 = u3 · v · u3 · u3 =

u6 · v · u3 = u9v = uv. So, u commutes with v.

18. (d) vu = uv = v2u2 = vuvu. The cancellation law then implies that uv =

vu = 1.

18. (e) Since u4 = v3 = 1, we have u4v3 = 1. But, u4v3 = u(uv)3 = u, so u = 1. If
u = 1, then uv = v = 1. Thus, Y = {1}.
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1.3 Symmetric Groups

1. The cycle decompositions are σ = (1 3 5)(2 4), τ = (1 5)(2 3), σ2 = (1 5 3),
στ = (2 5 3 4), τσ = (1 2 4 3), τ2σ = σ = (1 3 5)(2 4).

2. The cycle decompositions are σ = (1 13 5 10)(3 15 8)(4 14 11 7 12 9), τ =

(1 14)(2 9 15 13 4)(3 10)(5 12 7)(8 11), σ2 = (1 5)(3 8 15)(4 11 12)(7 9 14)(10 13),
στ = (1 11 3)(2 4)(5 9 8 7 10 15)(13 14), τσ = (1 4)(2 9)(3 13 12 15 11 5)(8 10 14),
τ2σ = (1 2 15 8 3 4 14 11 12 13 7 5 10).

3. For the permutations of exercise 1, we have |σ| = 6, |τ| = 2, |σ2| = 3, |στ| = 4,
|τσ| = 4, |τ2σ| = 6.

For the permutations of exercise 2, we have |σ| = 12, |τ| = 30, |σ2| = 6, |στ| = 6,
|τσ| = 6, |τ2σ| = 13.

4. (a) Let the elements of S3 be labeled as they are on pg. 31. Then we have
|σ1| = 1, |σ2| = |σ3| = |σ4| = 2, |σ5| = |σ6| = 3.

4. (b) |1| = 1, |(1 2)| = |(1 3)| = |(1 4)| = |(2 3)| = |(2 4)| = |(3 4)| =
|(1 2)(3 4)| = |(1 3)(2 4)| = |(1 4)(2 3)| = 2, |(1 2 3)| = |(1 3 2)| = |(1 2 4)| =
|(1 4 2)| = |(1 3 4)| = |(1 4 3)| = |(2 3 4)| = |(2 4 3)| = 3, |(1 2 3 4)| =
|(1 2 4 3)| = |(1 3 2 4)| = |(1 3 4 2)| = |(1 4 3 2)| = |(1 4 2 3)| = 4.

5. This permutation is order 30.

6. See exercise 4.(b).

7. See exercise 4.(b).

8. Consider the function f : Ω → SΩ defined by f (n) = (1 n), where we define
(1 1) to be the identity 1. The function f is clearly injective, so |SΩ| ≥ |Ω|. Since
|Ω| = ℵ0, we have the claim.

9. (a) σi is also a 12-cycle when (i, 12) = 1.

9. (b) σi is also an 8-cycle when (i, 8) = 1.

9. (c) σi is also a 14-cycle when (i, 14) = 1.
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10. Let σ = (a1 a2 ... am). By definition, σ(ak) = ak+1, where subscripts are
understood to be replaced by their least positive residues mod m from here on.
Suppose σj(ak) = ak+j for all j < i. Then σi(ak) = σ(σi−1(ak)) = σ(ak+i−1) = ak+i.
By induction on i, σi(ak) = ak+i holds for all i. Note that ak = ak+i for all k iff
k = k + i (mod m). The smallest such i greater than 0 is m, from which we deduce
that |σ| = m.

11. Let σ = (1 2 ... m). Suppose that (m, i) = 1. Then for any integer j, m|ij iff m|j.
It follows that the σik(n) 6= σi`(n) for any 0 ≤ k, ` < m unless k = `. Otherwise, we
would have m|(k− `), which is absurd since |k− `| < m. So, the first m powers of
σi are distinct and can be used to express the m-cycle (1 σi(1) σ2i(1) ... σ(m−1)i(1)),
which is exactly σi.

Now suppose that σi is an m-cycle. Then |σi| = |σ| = m, so for any integer j,
m|ij iff m|j. It follows that (m, i) = 1, since otherwise, there would exist j not
divisible by m such that m|ij.

12. (a) τ = σ5, where σ = (1 3 5 7 9 2 4 6 8 10).

12. (b) There is no such σ. First, observe that such a σ must be a 5-cycle, since
no power of an n-cycle ρ can fix any element that ρ does not fix unless it is the
identity. For if ρk(m) = m + k (mod n) = m but ρk(`) = `+ k (mod n) 6= `, the
first equation would imply that n|k, but the second would imply n - k. From the
fact that τ is not a 5-cycle, we have the restriction (5, k) > 1, and since σ must be a
5-cycle, we need only consider k < 5. There is clearly no k < 5 satisfying (5, k) > 1.
So no such σ exists.

13. Consider an element σ of Sn whose cycle decomposition is a product of com-
muting 2-cycles. Then σ2 can be written as the product of the squares of 2-cycles.
However, since 2-cycles are of order 2, their squares are identity permutations. It
follows that σ2 is the identity and |σ| = 2.

Now suppose that |σ| = 2. Then for any element j not fixed by σ, σ2(j) = j.
For any two elements j, k not fixed by σ, we find that j = σ(k) iff k = σ(j). Other-
wise, we would have σ2(j) 6= j or σ2(k) 6= k, which would mean that |σ| 6= 2. Thus,
the set of 2-cycles {(j σ(j)) | σ(j) 6= j} has elements that are pairwise disjoint.
Clearly, the product of all elements in this set acts identically to σ, so σ is a product
of disjoint 2-cycles.

14. Let p be a prime, and σ ∈ Sn be such that σ is a product of commuting p-
cycles. Then σp is a product of pth powers of p-cycles. But the pth power of a
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p-cycle is the identity and no lower power of a p-cycle yields the identity. Hence,
σp is the identity and |σ| = p.

Now suppose that |σ| = p. Then for all j not fixed by σ, σp(j) = j. Further-
more, there is no k < p such that σk(j) = j. Assuming otherwise, and letting k
be the smallest positive integer such that σk(j) = j, we would arrive at the conclu-
sion that k|p. But p is prime so this is impossible. Therefore, for any j such that
σ(j) 6= j, we can construct the p-cycle (j σ(j) σ2(j) ... σp−1(j)), which describes
how σ acts on j. Note that if two elements j, k exist such that σα(j) = σβ(k), then
j, k belong to the same cycle. Assuming without loss of generality that α > β, this
is because σα(j) = σβ(k) implies that σα−β(j) = k. Writing j’s p-cycle so that it
starts at σα−β(j) = k, we see that their p-cycles are identical. Therefore, the ele-
ments of {(j σ(j) σ2(j) ... σp−1(j) | σ(j) 6= j} are pairwise disjoint. The product of
all elements in this set acts identically to σ, so σ is the product of disjoint p-cycles.

If p is not prime, this is not necessarily true. τ = (1 2)(3 4 5) is of order 6,
yet it is not a product of disjoint 6-cycles.

15. Let σ ∈ Sn and let σ1, ..., σm be the component cycles of its cycle decomposition
so that σ = σ1σ2...σm. We know from exercise 10 that if σi is an `i-cycle, then
|σi| = `i. It follows that each of the `i must divide |σ|. By definition, |σ| must be
the smallest positive integer such that this is true. Since the lcm of `1, ...`m is by
definition the smallest positive integer such that it is divisible by all the `i, it is
equal to |σ|.

16. There are n(n− 1)...(n− m + 1) ways to select an ordering of m elements to
write as an m-cycle. However, any given m-cycle may be written using m different
orderings (related by cyclic permutation) of the m elements it permutes. Thus, the
total number of m-cycles in Sn is n(n− 1)...(n−m + 1)/m

17. There are n(n− 1)(n− 2)(n− 3) ways to select an ordering of 4 elements to
write as two 2-cycles. However, each of the 2-cycles may be written 2 different
ways, and the cycles are disjoint so they may be written in either order. Each
product of 2-cycles may thus be written 8 different ways. The number of elements
of Sn that are products of two disjoint 2-cycles is therefore n(n− 1)(n− 2)(n− 3)/8.

18. S5 contains cycles of length 1, 2, ..., 5 along with their products. The only new
n added by these products is 6, which comes from the product of a 2-cycle and
3-cycle.
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19. Similarly to the previous exercise, 1, 2, ..., 7 are possible since S7 contains cycles
of all those lengths. In addition, |(1 2)(3 4 5 6 7)| = 10 and |(1 2 3)(4 5 6 7)| = 12,
so n can take on the values 1, 2, 3, 4, 5, 6, 7, 10, 12.

20. Let r = (1 2), and s = (1 3). Then T = {r, s} is a set of generators of S3. To
see this, observe that rs = (1 3 2), sr = (1 2 3), r2 = 1, and rsr = (2 3). They
satisfy the relations r2 = s2 = 1, and rs = (sr)2. These relations allow us to easily
reduce any element of S3 to a product of at most three r’s and s’s, allowing us to
determine exactly when two elements of S3 are equal.
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1.4 Matrix Groups

1. There cannot be more than two zero entries in an element of GL2(F2), for
such matrices are not invertible. Therefore, there are only two "free" entries for
an element of GL2(F2). Furthermore, there must be at least one zero entry in
an element of GL2(F2), because otherwise the matrix is not invertible. All four
possible matrices with exactly one zero entry, and only two matrices with two zero
entries are invertible. So, |GL2(F2)| = 6.

2. The elements are

a1 =

(
1 0
0 1

)
, a2 =

(
0 1
1 0

)
a3 =

(
0 1
1 1

)

a4 =

(
1 0
1 1

)
, a5 =

(
1 1
0 1

)
, a6 =

(
1 1
1 0

)
The orders of these elements are |a1| = 1, |a2| = |a4| = |a5| = 2, |a3| = |a6| = 3.

3. We have a5a3 = a4 but a3a5 = a2. So GL2(F2) is non-abelian.

4. Consider the set Z/nZ for n not a prime. Then there exist positive integers
a, b such that n = ab and a, b > 1. Suppose there exists a multiplicative inverse c
of a. Then it must be true that ac = qn + 1 for some q ∈ Z. However, n = ab so
ac = qn + 1 = qab + 1 from which it follows that a(c− qb) = 1. This is impossible
because a > 1! So a has no inverse in Z/nZ and (Z/nZ− {0}, ·) is not a group.
We must conclude that Z/nZ is not a field for n not prime.

5. Suppose that F is a field of finite order m. Then an n × n matrix taking its
entries from F has m possible choices for each of its n2 entries. So, there are exactly
mn2

different n× n matrices taking elements from F, and at least one of these is not
invertible (the matrix of all zeros, for example). It follows that |GLn(F)| < mn2

and
GLn(F) is therefore a finite group.

Now let GLn(F) be a finite group, and assume that F has infinitely many elements.
Then there can only be finitely many invertible n× n matrices taking elements from
F. Because F is a field, every element x ∈ F has a multiplicative inverse x−1 ∈ F.
But from every element x ∈ F, we can construct the matrix xIn, where In is the
identity matrix. This matrix clearly has an inverse x−1 In and so is an element of
GLn(F). Since there are infinitely many such matrices, GLn(F) must be an infinite
group. This is a contradiction, so F must have a finite number of elements.
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6. Let |F| = q. Then each entry of an n × n matrix can take any of q possible
values. There are n2 entries in an n × n matrix, so there are qn2

different n ×
n matrices taking entries from F. However the zero matrix with all entries the
additive identity of F is not invertible. There are thus strictly less than qn2

invertible
n× n matrices taking entries from F and therefore, |GLn(F)| < qn2

.

7. As described in exercise 6, there are p4 different 2× 2 matrices taking entries
from Fp. Remembering that a 2× 2 matrix is not invertible iff one of its rows is a
multiple of the other, we simply have to count the number of such matrices. First,
consider matrices of the form (

a b
ca cb

)
Counting only those matrices such that a and b are not both zero, we find that there
are p(p2− 1) such matrices, since we are excluding one of the p2 sets of values that
a and b can take, and c can also take on p different values. Now, counting matrices
of the form (

0 0
a b

)
it is easy to see that there are p2 such matrices. Thus, there are p(p2 − 1) + p2 =

p3 + p2 − p non-invertible 2× 2 matrices. It follows that |GLn(Fp)| = p4 − p3 −
p2 + p.

8. Let A be the n× n antidiagonal matrix with all non-zero entries equal to 1, and
let B be the matrix constructed by changing the (n− 1, 1) entry of A to 1. It’s easy
to see that for any matrix M, AM simply reverses the order of the rows of M, while
MA reverses the order of the columns of M. Then the (AB)2,1 = 1 but (BA)2,1 = 0,
so AB 6= BA. A is an element of GLn(F), since A2 = I, and B is also an element
of GLn(F), since the matrix C constructed by changing the (2, n) entry of A to −1
satisfies BC = CB = I. We can construct such matrices for all fields F because F
by definition must have an additive identity 0 and a multiplicative identity 1. F
must also contain the additive inverse −1 because it is an abelian group under +.
Therefore, for any n ≥ 2 and any F, GLn(F) is non-abelian.

9. Define matrices A, B, C as follows

A =

(
a1 a2

a3 a4

)
, B =

(
b1 b2

b3 b4

)
, C =

(
c1 c2

c3 c4

)
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Then the following holds

A(BC) =
(

a1 a2

a3 a4

)(
b1c1 + b2c3 b1c2 + b2c4

b3c1 + b4c3 b3c2 + b4c4

)
=

(
a1(b1c1 + b2c3) + a2(b3c1 + b4c3) a1(b1c2 + b2c4) + a2(b3c2 + b4c4)

a3(b1c1 + b2c3) + a4(b3c1 + b4c3) a3(b1c2 + b2c4) + a4(b3c2 + b4c4)

)
=

(
(a1b1 + a2b3)c1 + (a1b2 + a2b4)c3 (a1b1 + a2b3)c2 + (a1b2 + a2b4)c4

(a3b1 + a4b3)c1 + (a3b2 + a4b4)c3 (a3b1 + a4b3)c2 + (a3b2 + a4b4)C4

)
=

(
a1b1 + a2b3 a1b2 + a2b4

a3b1 + a4b3 a3b2 + a4b4

)(
c1 c2

c3 c4

)
= (AB)C

So matrix multiplication of 2× 2 matrices with entries in R is associative.

10. (a) The product is(
a1 b1

0 c1

)(
a2 b2

0 c2

)
=

(
a1a2 a1b2 + b1c2

0 c1c2

)
Since a1, a2 6= 0 and c1, c2 6= 0 for any elements of G, a1a2 6= 0 and c1c2 6= 0.
Therefore, the product of any two elements of G is also an element of G.

10. (b) The matrix inverse must satisfy(
a b
0 c

)(
d e
f g

)
=

(
ad + b f ae + bg

c f cg

)
=

(
1 0
0 1

)
Immediately, we find that f = 0, g = c−1, and d = a−1. Since ae = −bg = −bc−1,
we have e = −b(ac)−1 and the inverse is(

a b
0 c

)−1

=

(
a−1 −b(ac)−1

0 c−1

)
The inverse is clearly an element of G, since if a, c 6= 0, then a−1, c−1 6= 0.

10. (c) The identity is clearly an element of G, and from exercise 9, the binary
operation of G is associative. Every element of G is obviously also an element
of GL2(R), since G contains only invertible 2× 2 real matrices. These properties
along with those shown in exercises 10.(a) and 10.(b) allow us to conclude that G
is a subgroup of GL2(R).
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10. (d) Let us call this set H. Clearly, the identity I is in H. Furthermore, H is
closed under matrix multiplication since(

a b
0 a

)(
c d
0 c

)
=

(
ac ad + bc
0 ac

)
Every element of H is also an element of G, so from exercise 10.(b), the inverse
takes the form (

a b
0 a

)−1

=

(
a−1 −ba−2

0 a−1

)
So H is closed under inverses. Again, matrix multiplication for 2× 2 real matrices
is associative from exercise 9, and all elements of H are clearly elements of GL2(R).
Thus, H is also a subgroup of GL2(R).

11. (a) The product is

XY =

1 a b
0 1 c
0 0 1

1 d e
0 1 f
0 0 1

 =

1 d + a e + a f + b
0 1 f + c
0 0 1


So H is closed under matrix multiplication. Let X and Y now be the matrices

X =

1 2 3
0 1 4
0 0 1

 , Y =

1 4 3
0 1 2
0 0 1


Then we have

XY =

1 6 10
0 1 6
0 0 1

 6=
1 6 22

0 1 6
0 0 1

 = YX

So H must be non-abelian.

11. (b) The inverse must satisfy1 a b
0 1 c
0 0 1

d e f
g h i
j k l

 =

d + ag + bj e + ah + bk f + ai + bl
g + cj h + ck i + cl

j k l

 =

1 0 0
0 1 0
0 0 1


We see immediately that j = k = 0 and l = 1, allowing us to simplify the form of
the product to d + ag e + ah f + ai + b

g h i + c
0 0 1

 =

1 0 0
0 1 0
0 0 1
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giving the results g = 0, h = 1, and i = −c. It follows that d = 1, e = −a, and
f = ac− b. The inverse is therefore1 a b

0 1 c
0 0 1

−1

=

1 −a ac− b
0 1 −c
0 0 1


The inverse is clearly an element of H(F), so H(F) is closed under inverses.

11. (c) Let A, B, C ∈ H(F) be written as follows

A =

1 a1 a2

0 1 a3

0 0 1

 , B =

1 b1 b2

0 1 b3

0 0 1

 , C =

1 c1 c2

0 1 c3

0 0 1


Then the following is true

A(BC) =

1 a1 a2

0 1 a3

0 0 1

1 b1 + c1 b2 + c2 + b1c3

0 1 b3 + c3

0 0 1


=

1 a1 + b1 + c1 a2 + b2 + c2 + b1c3 + a1(b3 + c3)

0 1 a3 + b3 + c3

0 0 1


=

1 a1 + b1 + c1 a2 + b2 + c2 + a1b3 + (a1 + b1)c3

0 1 a3 + b3 + c3

0 0 1


=

1 a1 + b1 a2 + b2 + a1b3

0 1 a3 + b3

0 0 1

1 c1 c2

0 1 c3

0 0 1


= (AB)C

So the group operation of H(F) is associative. Note that there are only three "free"
entries for an element of H(F), each of which can take any one of |F| values. This
implies that |H(F)| = |F|3.

11. (d) Label the elements of H(Z/2Z) as follows

I =

1 0 0
0 1 0
0 0 1

 , Λ1 =

1 1 0
0 1 0
0 0 1

 , Λ2 =

1 0 1
0 1 0
0 0 1

 , Λ3 =

1 0 0
0 1 1
0 0 1



Λ4 =

1 0 1
0 1 1
0 0 1

 , Λ5 =

1 1 0
0 1 1
0 0 1

 , Λ6 =

1 1 1
0 1 0
0 0 1

 , Λ7 =

1 1 1
0 1 1
0 0 1


Their orders are |I| = 1, |Λ1| = |Λ2| = |Λ3| = |Λ4| = |Λ6| = 2, |Λ5| = |Λ7| = 4.
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11. (e) Let A be any non-identity element of H(R) and suppose |A| = n, for
n ∈ Z+. Then An = I, which implies that An−1 = A−1. As we saw in exercise
11.(b), 1 A1,2 A1,3

0 1 A2,3

0 0 1

−1

=

1 −A1,2 A1,2A2,3 − A1,3

0 1 −A2,3

0 0 1


Now we prove that Am takes the form

Am =

1 mA1,2 mA1,3 +
m(m−1)

2 A1,2 A2,3

0 1 mA2,3

0 0 1


The equation holds for m = 2, since a simple application of the result of exercise
11.(a) yields

A2 =

1 2A1,2 2A1,3 + A1,2A2,3

0 1 2A2,3

0 0 1


Now, suppose it holds for all k < m, and consider Am. We have

Am = Am−1A

=

1 (m− 1)A1,2 (m− 1)A1,3 +
(m−1)(m−2)

2 A1,2 A2,3

0 1 (m− 1)A2,3

0 0 1


1 A1,2 A1,3

0 1 A2,3

0 0 1



=

1 (m− 1)A1,2 + A1,2 (m− 1)A1,3 +
(m−1)(m−2)

2 A1,2A2,3 + A1,3 + (m− 1)A1,2 A2,3

0 1 (m− 1)A2,3 + A2,3

0 0 1


=

1 mA1,2 mA1,3 +
m(m−1)

2 A1,2 A2,3

0 1 mA2,3

0 0 1


and by induction on m, the equation holds for all m ∈ Z+. Observing that An−1

cannot possibly be equal to A−1 unless A1,2 = A1,3 = A2,3 = 0, we find that we
have arrived at a contradiction. It must be that every non-identity element of H(R)

has infinite order.
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1.5 The Quaternion Group

1. The orders are |1| = 1, | − 1| = 2, |i| = |j| = |k| = | − i| = | − j| = | − k| = 4.

2. For S3, using the labels given on page 31 of the text, we have

σ1 σ2 σ3 σ4 σ5 σ6

σ2 σ1 σ5 σ6 σ3 σ4

σ3 σ6 σ1 σ5 σ4 σ2

σ4 σ5 σ6 σ1 σ2 σ3

σ5 σ4 σ2 σ3 σ6 σ1

σ6 σ3 σ4 σ2 σ1 σ5


For D8, we have 

1 r r2 r3 s sr sr2 sr3

r r2 r3 1 sr3 s sr sr2

r2 r3 1 r sr2 sr3 s sr
r3 1 r r2 sr sr2 sr3 s
s sr sr2 sr3 1 r r2 r3

sr sr2 sr3 s r3 1 r r2

sr2 sr3 s sr r2 r3 1 r
sr3 s sr sr2 r r2 r3 1


Finally, for Q8, we have

1 −1 i −i j −j k −k
−1 1 −i i −j j −k k

i −i −1 1 k −k −j j
−i i 1 −1 −k k j −j
j −j −k k −1 1 i −i
−j j k −k 1 −1 −i i
k −k j −j −i i −1 1
−k k −j j i −i 1 −1


3. It is easy to see that i, j generate Q8. They satisfy the relations i2 = j2, i4 = 1,
and ij = −ji.
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1.6 Homomorphisms and Isomorphisms

1. (a) This equation holds for n = 2 by definition of a group homomorphism.
Suppose now that it holds for all k < n. Then for ϕ(xn) we have ϕ(xn) =

ϕ(xn−1x) = ϕ(xn−1)ϕ(x) = ϕ(x)n−1ϕ(x) = ϕ(x)n. By induction on n, we find
that the claim is true.

1. (b) First, we handle ϕ(x0) = ϕ(1). Let e ∈ H be the identity of H. Then
we have eϕ(1) = ϕ(1) = ϕ(1 · 1) = ϕ(1)ϕ(1). Multiplying by ϕ(1)−1, we obtain
e = ϕ(1) or ϕ(x)0 = ϕ(x0). Now, we consider ϕ applied to powers of x−1. Since
ϕ is a homomorphism, we have ϕ(1) = ϕ(x−1x) = ϕ(x−1)ϕ(x). This implies that
ϕ(x−1) = ϕ(x)−1. Applying the proof of part (a) to x−1, we find that ϕ(xn) =

ϕ(x)n for all n ∈ Z.

2. From the results of exercise 1, we have ϕ(xn) = ϕ(x)n for all n ∈ Z. So,
assuming |x| is finite, ϕ(1) = ϕ(x|x|) = ϕ(x)|x|, meaning |ϕ(x)| ≤ |x|. Similarly,
assuming |ϕ(x)| is finite, we have ϕ(x|ϕ(x)|) = ϕ(x)|ϕ(x)| = ϕ(1). Since ϕ is an
isomorphism, this implies that x|ϕ(x)| = 1, so |ϕ(x)| ≥ |x|. It follows that |x| is
finite iff |ϕ(x)| is finite, and that |ϕ(x)| = |x|. Because ϕ is a bijection, the two
groups have the same number of elements of order n for each n ∈ Z+. This is
not necessarily true if ϕ is merely a homomorphism, since a homomorphism is not
necessarily injective.

3. Suppose G is abelian. Since ϕ is a bijection, for every element h ∈ H, there ex-
ists g ∈ G such that h = ϕ(g). Then consider any two elements h1, h2 ∈ H and let
g1, g2 ∈ G be such that h1 = ϕ(g1) and h2 = ϕ(g2). We have h1h2 = ϕ(g1)ϕ(g2) =

ϕ(g1g2) = ϕ(g2g1) = ϕ(g2)ϕ(g1) = h2h1. So H is abelian. If ϕ is assumed to only
be a homomorphism, then we require that ϕ also be a surjection for this proof to
work.

Now suppose that H is abelian. Then for any g1, g2 ∈ G, we have ϕ(g1g2) =

ϕ(g1)ϕ(g2) = ϕ(g2)ϕ(g1) = ϕ(g2g1). Since ϕ is an isomorphism, this implies that
g1g2 = g2g1, so G is abelian.

4. R− {0} cannot be isomorphic to C− {0} because the former has no elements
of order 3, while the latter has two elements of order 3.

5. Suppose there exists an isomorphism ϕ : Q → R. Then there must be q1, q2 ∈
Q such that ϕ(q1) =

√
2 and ϕ(q2) = 2. Let n1, n2, k1, k2 be integers such that

(ni, ki) = 1 and qi =
ki
ni

. Then k1ϕ(1) = ϕ(k1) = ϕ(q1n1) = n1ϕ(q1) = n1
√

2 and
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k2 ϕ(1) = ϕ(k2) = ϕ(q2n2) = n2ϕ(q2) = 2n2. It follows that
√

2 = k2n1
k1n2

, which is
absurd! Thus, Q cannot be isomorphic to R.

6. Suppose there exists an isomorphism ϕ : Z → Q. Then there must be z ∈ Z

such that ϕ(z) = 1
2 ϕ(1). But ϕ(z) = zϕ(1), which implies that z = 1

2 . This is
absurd, so Z cannot be isomorphic to Q.

7. Q8 has one element of order 2, while D8 has five such elements. Thus, they
cannot be isomorphic.

8. If n 6= m, then |Sn| = n! 6= m! = |Sm|. Then there cannot exist a bijection
ϕ : Sm → Sn, so Sm and Sn cannot be isomorphic.

9. S4 has 9 elements of order 2, whereas D24 has 13 such elements. Therefore,
they cannot be isomorphic.

10. (a) Let σ : ∆ → ∆ be a permutation. We must show that ϕ(σ) is a bijection
from Ω to itself. It is obvious from the fact that θ : ∆ → Ω and σ : ∆ → ∆
that θ ◦ σ ◦ θ−1 is a map from Ω to itself. Let a, b be any two elements of Ω. If
a 6= b, then θ−1(a) 6= θ−1(b) because θ−1 is a bijection. For the same reason,
σ(θ−1(a)) 6= σ(θ−1(b)) and θ(σ(θ−1(a))) 6= θ(σ(θ−1(b))). Therefore, θ ◦ σ ◦ θ−1 is
a bijection from Ω to itself (i.e., it is a permutation of Ω).

10. (b) Define ϕ−1 : SΩ → S∆ by ϕ−1(τ) = θ−1 ◦ τ ◦ θ for all τ ∈ SΩ. Then for any
σ ∈ S∆, we have ϕ−1(ϕ(σ)) = θ−1 ◦ ϕ(σ) ◦ θ = θ−1 ◦ θ ◦ σ ◦ θ−1 ◦ θ = σ. Similarly,
for any τ ∈ SΩ, we have ϕ(ϕ−1(τ)) = θ ◦ ϕ−1(τ) ◦ θ−1 = θ ◦ θ−1 ◦ τ ◦ θ ◦ θ−1 = τ.
ϕ−1 is clearly the inverse of ϕ, so ϕ must be a bijection from S∆ → SΩ.

10. (c) Simply observe that ϕ(σ ◦ τ) = θ ◦ σ ◦ τ ◦ θ−1 = θ ◦ σ ◦ θ−1 ◦ θ ◦ τ ◦ θ−1 =

ϕ(σ) ◦ ϕ(τ). Thus, ϕ is a homomorphism.

11. Define ϕ : A × B → B × A by ϕ((a, b)) = (b, a) for all (a, b) ∈ A × B. We
will prove that ϕ is an isomorphism. First, we prove that ϕ is a surjection. For
any element (b, a) ∈ B× A, we have b ∈ B and a ∈ A, so (a, b) is necessarily an
element of A× B. Since ϕ((a, b)) = (b, a), for every element (b, a) of B× A, there
exists an element (a, b) of A× B such that ϕ((a, b)) = (b, a). Next, we prove that
ϕ is also an injection. Let (a1, b1), (a2, b2) ∈ A× B be such that (a1, b1) 6= (a2, b2).
Then necessarily, a1 6= a2 or b1 6= b2, and it follows that (b1, a1) 6= (b2, a2). All
that remains is to prove that ϕ is a homomorphism. Since ϕ((a1, b1)(a2, b2)) =

ϕ((a1a2, b1b2)) = (b1b2, a1a2) = (b1, a1)(b2, a2) = ϕ((a1, b1))ϕ((a2, b2)), ϕ must be a
homomorphism. Thus, A× B ∼= B× A.
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12. Define ϕ : G × C → A × H by ϕ(((a, b), c)) = (a, (b, c)) for all ((a, b), c) ∈
G×C. The proof that ϕ is an isomorphism is almost identical to the one presented
in exercise 11. Since ϕ is an isomorphism, it follows that G× C ∼= A× H.

13. Let 1G be the identity of G and 1H be the identity of H. From exercise 1, we
know that ϕ(1G) = 1H, so ϕ(G) contains the identity element. Since ϕ(G) ⊆ H,
the group operation of H must be associative on ϕ(G) as well. By the definition
of a homomorphism, for any two elements ϕ(g1), ϕ(g2) ∈ ϕ(G), their product
ϕ(g1)ϕ(g2) = ϕ(g1g2) is also an element of ϕ(G). Finally, for any ϕ(g) ∈ ϕ(G), its
inverse ϕ(g)−1 = ϕ(g−1) is an element of ϕ(G). Thus, ϕ(G) is a subgroup of H.

Now suppose that ϕ is injective. By definition, for every h ∈ ϕ(G), there exists
g ∈ G such that ϕ(g) = h. Then the map ψ : G → ϕ(G) defined as ψ(g) = ϕ(g)
for all g ∈ G is an injection, a surjection, and a homomorphism. It follows that
G ∼= ϕ(G).

14. Let 1G be the identity of G and Kϕ = {g ∈ G | ϕ(g) = 1H}. As shown in
exercise 1, 1G is always an element of Kϕ, so the kernel contains the identity ele-
ment. Because the group operation of G is associative and Kϕ is a subset of G, it
must also be associative on Kϕ. Consider the product g1g2 of any two elements
g1, g2 ∈ Kϕ. We have ϕ(g1g2) = ϕ(g1)ϕ(g2) = 1H1H = 1H, so Kϕ is closed under
the group operation. Finally, for any g ∈ Kϕ, we have 1H = ϕ(1G) = ϕ(g−1g) =

ϕ(g−1)ϕ(g) = ϕ(g−1), so g−1 ∈ Kϕ. Therefore, Kϕ is a subgroup of G.

Now we prove that ϕ is injective iff Kϕ is the identity subgroup of G. If ϕ is
injective, then g1 6= g2 implies that ϕ(g1) 6= ϕ(g2). Thus, for any element g ∈ G
such that g 6= 1G, we have ϕ(g) 6= 1H. Then Kϕ must be the identity subgroup of
G. If Kϕ is the identity subgroup, then for any g ∈ G such that g 6= 1G, ϕ(g) 6= 1H.
Suppose that there exists g1, g2 ∈ G such that g1 6= g2 but ϕ(g1) = ϕ(g2). Then
ϕ(g1)ϕ(g2)−1 = 1H. But ϕ(g1)ϕ(g2)−1 = ϕ(g1)ϕ(g−1

2 ) = ϕ(g1g−1
2 ). Since g1 6= g2,

g1g−1
2 6= 1G, so this implies that there is another element g1g−1

2 6= 1G in Kϕ. We
have a contradiction, so there are no such g1, g2 ∈ G and ϕ is injective.

15. For any (x1, y1), (x2, y2) ∈ R2, we have π((x1, y1)+ (x2, y2)) = π((x1 + x2, y1 +

y2)) = x1 + x2 = π((x1, y1)) + π((x2, y2)) so π is a homomorphism. The kernel of
π is clearly {(x, y) ∈ R2 | x = 0}.

16. For any (a1, b1), (a2, b2) ∈ G, we have π1((a1, b1)(a2, b2)) = π1((a1a2, b1b2)) =

a1a2 = π1((a1, b1))π1((a2, b2)) and π2((a1, b1)(a2, b2)) = π2((a1a2, b1b2)) = b1b2 =

π2((a1, b1))π2((a2, b2)), so π1, π2 are homomorphisms. The kernel of π1 is {(a, b) ∈
G | a = 1A}, while the kernel of π2 is {(a, b) ∈ G | b = 1B}.
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17. Define the map ϕ : G → G by ϕ(g) = g−1 for all g ∈ G. If ϕ is a homomor-
phism, then for any g1, g2 ∈ G, we have g−1

2 g−1
1 = ϕ(g1g2) = ϕ(g1)ϕ(g2) = g−1

1 g−1
2 .

Left-multiplying by g1g2 and right-multiplying by g2g1, we have g2g1 = g1g2. So,
G is abelian.

If G is abelian, then for any g1, g2 ∈ G, we have g1g2 = g2g1. Then ϕ(g1g2) =

ϕ(g2g1) = g−1
1 g−1

2 = ϕ(g1)ϕ(g2), so ϕ is a homomorphism.

18. Define the map ϕ : G → G by ϕ(g) = g2 for all g ∈ G. If ϕ is a homomor-
phism, then for any g1, g2 ∈ G, we have (g1g2)2 = ϕ(g1g2) = ϕ(g1)ϕ(g2) = g2

1g2
2.

Left-multiplying by g−1
1 and right-multiplying by g−1

2 , we find that g2g1 = g1g2.
So, G is abelian.

If G is abelian, then for any g1, g2 ∈ G, we have g1g2 = g2g1. Then ϕ(g1g2) =

g1g2g1g2 = g2
1g2

2 = ϕ(g1)ϕ(g2) so ϕ is a homomorphism.

19. Define the map ϕ : G → G by ϕ(z) = zk (for fixed k ∈ Z+) for all z ∈ G.
Let z1, z2 be any two elements of G. Noting that C − {0} is an abelian group
under multiplication, we have ϕ(z1z2) = (z1z2)k = zk

1zk
2 = ϕ(z1)ϕ(z2), so ϕ is a

homomorphism. Let z be any element of G, and let n ∈ Z+ be such that zn = 1.
The element z1/k is also an element of G, since (z1/k)nk = zn = 1 and nk ∈ Z+. In
addition, ϕ(z1/k) = z, so ϕ is surjective. Note that ϕ is not injective, since its kernel
contains other elements besides the identity.

20. Define the map id : G → G by id(g) = g for all g ∈ G. Clearly, id is an
automorphism. In addition, for any σ ∈ Aut(G), we have σ(id(g)) = σ(g) and
id(σ(g)) = σ(g) for all g ∈ G, making id the identity element of Aut(G). Now, we
show that function composition is associative. For any σ, τ, θ ∈ Aut(G), we have
σ ◦ (τ ◦ θ)(g) = σ(τ ◦ θ(g)) = σ(τ(θ(g))) = σ ◦ τ(θ(g)) = (σ ◦ τ) ◦ θ(g) for all
g ∈ G. Next, consider any two elements σ1, σ2 ∈ Aut(G). Since σ1, σ2 are bijections,
they have two-sided inverses σ−1

1 , σ−1
2 . Then the product σ1 ◦ σ2 also has a two-

sided inverse σ−1
2 ◦ σ−1

1 , so the product is a bijection. It is also a homomorphism
because σ1 ◦ σ2(g1g2) = σ1(σ2(g1g2)) = σ1(σ2(g1)σ2(g2)) = σ1(σ2(g1))σ1(σ2(g2)) =

(σ1 ◦ σ2(g1))(σ1 ◦ σ2(g2)). So Aut(G) is closed under function composition. Fi-
nally, for any σ ∈ G, σ−1 is clearly an automorphism as well. It has a two-sided
inverse σ, making it a bijection, and for any two elements σ(g1), σ(g2) ∈ G, we
have σ−1(σ(g1)σ(g2)) = σ−1(σ(g1g2)) = g1g2 = σ−1(σ(g1))σ

−1(σ(g2)), making
σ−1 a homomorphism. We may conclude that Aut(G) is a group under function
composition.
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21. Fix k ∈ Q− {0}, and define the map ϕ : Q → Q by ϕ(q) = kq for all q ∈ Q.
Then for any two elements q, r ∈ Q, we have ϕ(q + r) = k(q + r) = kq + kr =

ϕ(q) + ϕ(r) so ϕ is a homomorphism. Defining ϕ−1 : Q → Q by ϕ−1(q) = q
k for

all q ∈ Q, it is clear that ϕ−1 is the two-sided inverse of ϕ: ϕ(ϕ−1(q)) = ϕ( q
k ) = q

and ϕ−1(ϕ(q)) = ϕ−1(kq) = q for all q ∈ Q. Thus, ϕ is both a bijection and a
homomorphism, making it an automorphism of Q.

22. Let A be an abelian group, and fix k ∈ Z. Define ϕ : A → A by ϕ(a) = ak

for all a ∈ A. Then for any two elements a, b ∈ A, we have ϕ(ab) = (ab)k =

akbk = ϕ(a)ϕ(b), so ϕ is a homomorphism. Suppose in addition that k = −1. Then
note that ϕ(ϕ(a)) = ϕ(a−1) = (a−1)−1 = a, so ϕ has a two-sided inverse and is a
bijection. Therefore, in this case, ϕ is an isomorphism.

23. Let G, σ be as defined in the problem statement. Consider the map ϕ : G →
G defined by ϕ(g) = g−1σ(g) for all g ∈ G. Since G is a finite group, ϕ is a
bijection iff it is an injection. Suppose that there exist g, h ∈ G such that g 6= h but
ϕ(g) = ϕ(h). Then we have g−1σ(g) = h−1σ(h) or hg−1 = σ(hg−1). Then we must
have hg−1 = 1, which implies h = g. This is a contradiction, so ϕ is injective (and
therefore bijective). Then for every g ∈ G, there exists h ∈ G such that g = h−1σ(h).
Applying σ to any element g, we have σ(g) = σ(h−1σ(h)) = σ(h)−1h = g−1. Then
for the product of any two elements g, h ∈ G, we have h−1g−1 = (gh)−1 = σ(gh) =
σ(g)σ(h) = g−1h−1 from which it follows that gh = hg. Thus, G is abelian.

24. If x and y generate G, then xy and y also generate G, since we can obtain
x from xy and y via xy · y = x. Then letting |xy| = n, we have the relations
(xy)n = 1, y2 = 1 and (xy)y = y(xy)−1. So, there is a unique homomorphism
ϕ : G → D2n satisfying ϕ(xy) = r and ϕ(y) = s. Since r, s generate D2n, ϕ is
surjective. Furthermore, |D2n| = |G|. To see this, note that the relation (xy)y =

y(xy)−1 allows us to write any product of xy and y (and therefore every element
of G) in the form yk(xy)` for some k, ` ∈ R. Since there are n distinct powers of
(xy) and 2 distinct powers of y, we have |G| = 2n = |D2n|. Thus ϕ is also injective,
which makes it an isomorphism. So, we may conclude that G ∼= D2n.

25. (a) Let v = (|v| cos(φ), |v| sin(φ)) be any element of R2. We have(
cos(θ) − sin(θ)
sin(θ) cos(θ)

)(
|v| cos(φ)
|v| sin(φ)

)
=

(
|v| cos(φ) cos(θ)− |v| sin(φ) sin(θ)
|v| cos(φ) sin(θ) + |v| sin(φ) cos(θ)

)
=

(
|v| cos(φ + θ)

|v| sin(φ + θ)

)
So the given matrix clearly rotates every element of R2 by θ radians.
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25. (b) We first prove that ϕ(r)m takes the form
(

cos(mθ) − sin(mθ)

sin(mθ) cos(mθ)

)
. The

equation holds trivially for m = 1, and it is clear that the equation holds also for
m = 2:(

cos(θ) − sin(θ)
sin(θ) cos(θ)

)(
cos(θ) − sin(θ)
sin(θ) cos(θ)

)
=

(
cos2(θ)− sin2(θ) −2 sin(θ) cos(θ)

2 sin(θ) cos(θ) cos2(θ)− sin2(θ)

)
=

(
cos(2θ) − sin(2θ)

sin(2θ) cos(2θ)

)
Suppose it holds for k < m. Then for ϕ(r)m, we have

ϕ(r)m = ϕ(r)m−1ϕ(r)

=

(
cos((m− 1)θ) − sin((m− 1)θ)
sin((m− 1)θ) cos((m− 1)θ)

)(
cos(θ) − sin(θ)
sin(θ) cos(θ)

)
=

(
cos((m− 1)θ) cos(θ)− sin((m− 1)θ) sin(θ) − cos((m− 1)θ) sin(θ)− sin((m− 1)θ) cos(θ)
sin((m− 1)θ) cos(θ) + cos((m− 1)θ) sin(θ) cos((m− 1)θ) cos(θ)− sin((m− 1)θ) sin(θ)

)
=

(
cos((m− 1)θ + θ) − sin((m− 1)θ + θ)

sin((m− 1)θ + θ) cos((m− 1)θ + θ)

)
=

(
cos(mθ) − sin(mθ)

sin(mθ) cos(mθ)

)
and by induction on m, we have the claim. In the case of ϕ(r)n, we have:

ϕ(r)n =

(
cos(nθ) − sin(nθ)

sin(nθ) cos(nθ)

)
=

(
cos(2π) − sin(2π)

sin(2π) cos(2π)

)
=

(
1 0
0 1

)
or ϕ(r)n = I. In addition, for ϕ(s), we find

ϕ(s)2 =

(
0 1
1 0

)(
0 1
1 0

)
=

(
1 0
0 1

)
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or ϕ(s)2 = 1. Finally, we have the relation

ϕ(r)ϕ(s) =
(

cos(θ) − sin(θ)
sin(θ) cos(θ)

)(
0 1
1 0

)
=

(
− sin(θ) cos(θ)
cos(θ) sin(θ)

)
=

(
sin(nθ − θ) cos(nθ − θ)

cos(nθ − θ) − sin(nθ − θ)

)
=

(
sin((n− 1)θ) cos((n− 1)θ)
cos((n− 1)θ) − sin((n− 1)θ)

)
=

(
0 1
1 0

)(
cos((n− 1)θ) − sin((n− 1)θ)
sin((n− 1)θ) cos((n− 1)θ)

)
= ϕ(s)ϕ(r)−1

Therefore, ϕ extends to a homomorphism of D2n into GL2(R).

25. (c) Suppose there exist two elements sirj, skr` ∈ D2n such that sirj 6= skr`

but ϕ(sirj) = ϕ(skr`). Then we would have ϕ(s)i ϕ(r)j ϕ(r)−`ϕ(s)−k = I so that
(ϕ(s)i ϕ(r)j)−1 = ϕ(r)−j ϕ(s)−i = ϕ(r)−`ϕ(s)−k. It follows that ϕ(r)`−j = ϕ(s)i−k

which implies that n|`− j and 2|i− k. Therefore, r`−j = 1 and si−k = 1, from which
we can conclude that rj = r` and si = sk so that sirj = skr`. This is a contradiction,
so ϕ is injective.

26. We have the relations

ϕ(i)2 =

(√
−1 0
0 −

√
−1

)(√
−1 0
0 −

√
−1

)
=

(
−1 0
0 −1

)
ϕ(j)2 =

(
0 −1
1 0

)(
0 −1
1 0

)
=

(
−1 0
0 −1

)
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ϕ(i)ϕ(j) =
(√
−1 0
0 −

√
−1

)(
0 −1
1 0

)
=

(
0 −

√
−1

−
√
−1 0

)
= −

(
0

√
−1√

−1 0

)
= −

(
0 −1
1 0

)(√
−1 0
0 −

√
−1

)
= −ϕ(j)ϕ(i)

Or ϕ(i)2 = ϕ(j)2 = −I and ϕ(i)ϕ(j) = −ϕ(j)ϕ(i). Thus, ϕ extends to a homomor-
phism from Q8 into GL2(C). If we write the relation ij = −ji in the form ji = i3 j,
it is easy to see that all elements of Q8 may be written in the form ik j`. A similar
argument to the one presented in exercise 25.(c) can be used to show that ϕ is
injective.
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1.7 Group Actions

1. Because F× is an abelian group, for all g1, g2, a ∈ F×, we have g1 · (g2 · a) =

g1 · (g2a) = g1(g2a) = (g1g2)a = (g1g2) · a. In the case that a = 0, we have
g1 · (g2 · 0) = g1 · 0 = 0 = (g1g2) · 0. Finally, because 1 is the identity of the group
F×, every a ∈ F× satisfies 1 · a = a. When a = 0, we have 1 · 0 = 0. So, F× indeed
acts on F by g · a = ga.

2. Z is a group under addition, meaning that + is associative on Z. Therefore, for
any two elements a, b, c ∈ Z, we have a · (b · c) = a+ (b+ c) = (a+ b) + c = (ab) · c.
In addition, for any a ∈ Z, we have 0 · a = 0 + a = a. So, the additive group Z acts
on itself by z · a = z + a for all z, a ∈ Z.

3. For any two elements s, t ∈ R and any element (x, y) ∈ R2, we have s · (t ·
(x, y)) = s · (x + ty, y) = (x + ty + sy, y) = (x + (t + s)y, y) = (t + s) · (x, y) =

(ts) · (x, y). In addition, for any (x, y) ∈ R2, we have 0 · (x, y) = (x + 0y, y) = (x, y).
So, the additive group R acts on R2 by r · (x, y) = (x + ry, y).

4. (a) The group operation of G is necessarily associative on the kernel of the
action. The identity element 1G is clearly in the kernel, since a group action is
required to satisfy 1G · a = a for all a ∈ A. Then note that for any two elements g, h
of the kernel, their product satisfies (gh) · a = g · (h · a) = g · a = a for all a ∈ A,
so the kernel is closed under the group operation. Finally, for any element g of the
kernel, we find that g−1 · a = g−1 · (g · a) = (g−1g) · a = 1G · a = a for all a ∈ A. So,
we find that the kernel of the action is a subgroup of G.

4. (b) Now we fix some a ∈ A and consider the group operation on the set
S = {g ∈ G | ga = a}. As above, the group operation of G is necessarily associative
on S. Furthermore, the identity element 1G of G satisfies 1G · b = b for all b ∈ S, so
it is certainly an element of S. For any two elements g, h ∈ S, we have (gh) · a =

g · (h · a) = g · a = a, so S is closed under the group operation. Finally, for any
element g ∈ S, we have g−1 · a = g−1 · (g · a) = (g−1g) · a = 1G · a = a, so S is
closed under inverses. So, we conclude that S is a subgroup of G.

5. The kernel of the permutation representation ϕ is the set S = {g ∈ G | ϕ(g) =
id}. That is, if g ∈ S, then for all a ∈ A, ϕ(g)(a) = σg(a) = g · a = a, so g is
also in the kernel of the action. Similarly, if g is in the kernel of the action, then
a = g · a = σg(a) = ϕ(g)(a) for all a ∈ A, meaning ϕ(g) = id, so g ∈ S.

6. Let G act faithfully on A. Then for any two elements g, h ∈ G such that g 6= h,
there exists some a ∈ A such that g · a 6= h · a. Thus, for any g ∈ G such that
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g 6= 1G, there exists at least one element a ∈ A such that g · a 6= 1G · a = a. It
follows that the kernel of the action contains only 1G.

If the kernel of the action is the set consisting of only the identity 1G, then for
any g ∈ G such that g 6= 1G, there exists at least one element a ∈ A such that
g · a 6= a. Now, suppose that there exists two elements g, h ∈ G with g 6= h such that
g · a = h · a for all a ∈ A. Then g−1 · (h · a) = g−1 · (g · a) = (g−1g) · a = 1G · a = a.
Since g−1 · (h · a) = (g−1h) · a, and the kernel of the action contains only the iden-
tity, it follows that g−1h = 1 or h = g. This is a contradiction, so any two distinct
elements g, h ∈ G induce distinct permutations. In other words, G acts faithfully
on A.

7. Here we will prove the statement "F× acts faithfully on V iff V is not the zero
vector space or F has only two elements", where F is any field and V is any vector
space over F.

Let V be a vector space over F and consider the action of F× on V via scalar
multiplication. By the vector space axioms, 1F · v = v for all v ∈ V. If |F×| = 1,
then the action of F× on V is trivially faithful, since there is only one element of F×.

If |F×| > 1 and V is not the zero vector space, then we can show that F× acts
faithfully on V. Suppose there is an element g ∈ F× such that g 6= 1F, but
g · v = v for all v ∈ V. Then we would have g · v = 1F · v for all v ∈ V, or
g · v− 1F · v = (g− 1F) · v = 0. Since V is not the zero vector space, this equation
holds for some non-zero v ∈ V, which implies that g = 1F...a contradiction! So the
kernel of the action is just {1F}, implying that F× acts faithfully on V.

If F× acts faithfully on V and |F×| > 1, then distinct elements of F× induce distinct
permutations on V. That is, for any a, b ∈ F× with a 6= b, there exists some v ∈ V
such that a · v 6= b · v. Clearly, v 6= 0 since, a · 0 = 0 for all a ∈ F×. Thus, V
cannot be the zero vector space. Proving these statements together is equivalent to
proving that F× acts faithfully on V iff |F×| = 1 or V is not the zero vector space,
so we have our claim.

8. (a) Consider any two elements σ1, σ2 ∈ SA and any {a1, ..., ak} ∈ B. Then we
have σ1 · (σ2 · {a1, ..., ak}) = σ1 · {σ2(a1), ..., σ2(ak)} = {σ1(σ2(a1)), ..., σ1(σ2(ak))} =

{σ1 ◦ σ2(a1), ..., σ1 ◦ σ2(ak)} = (σ1 ◦ σ2) · {a1, .., ak}. In addition, for any {a1, ..., ak} ∈
B, id · {a1, ..., ak} = {id(a1), ..., id(ak)} = {a1, ..., ak}. Thus, this is a group action.
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8. (b) Label the 2-element sets of {1, 2, 3, 4} as follows: a = {1, 2}, b = {1, 3},
c = {1, 4}, d = {2, 3}, e = {2, 4}, and f = {3, 4}. Then we have:

(1 2) · a = a (1 2) · b = d (1 2) · c = e (1 2) · d = b (1 2) · e = c (1 2) · f = f

(1 2 3) · a = d (1 2 3) · b = a (1 2 3) · c = e (1 2 3) · d = b

(1 2 3) · e = f (1 2 3) · f = c

9. The proof that the action of SA on B is a group action is identical to the one
in exercise 8. Now, label the 16 ordered 2-tuples as follows: a = (1, 2), b = (1, 3),
c = (1, 4), d = (2, 3), e = (2, 4), f = (3, 4), g = (2, 1), h = (3, 1), i = (4, 1),
j = (3, 2), k = (4, 2), l = (4, 3), m = (1, 1), n = (2, 2), o = (3, 3), p = (4, 4). Then
we have:

(1 2) · a = g (1 2) · b = d (1 2) · c = e (1 2) · d = b (1 2) · e = c (1 2) · f = f

(1 2) · g = a (1 2) · h = j (1 2) · i = k (1 2) · j = h (1 2) · k = i (1 2) · l = l

(1 2) ·m = n (1 2) · n = m (1 2) · o = o (1 2) · p = p

(1 2 3) · a = d (1 2 3) · b = g (1 2 3) · c = e (1 2 3) · d = h

(1 2 3) · e = f (1 2 3) · f = c (1 2 3) · g = j (1 2 3) · h = a

(1 2 3) · i = k (1 2 3) · j = b (1 2 3) · k = l (1 2 3) · l = i

(1 2 3) ·m = n (1 2 3) · n = o (1 2 3) · o = m (1 2 3) · p = p

10. (a) Let B be the set of k-element subsets of A = {1, ..., n}. Assume that Sn

does not act faithfully on B. Then n > 1 and there exists σ ∈ Sn with σ 6= id such
that σ · b = b for all b ∈ B. Because σ 6= id, there must exist at least one a ∈ A such
that σ(a) 6= a. If k < n, then there exists b ∈ B such that σ(a) /∈ b but a ∈ b. Then
σ(a) /∈ id · b, but σ(a) ∈ σ · b and therefore, σ · b 6= b. This is a contradiction, so Sn

acts faithfully. If, instead, k = n, then B = {A}. Because every element σ ∈ Sn is a
bijection σ : A → A, we have σ(A) = A for all σ ∈ Sn. It follows that in this case,
Sn does not act faithfully on B.

10. (b) Let B be the set of ordered k-tuples containing elements of A = {1, ..., n}.
Assume that Sn does not act faithfully on B. Then n > 1 and there exists σ ∈ Sn

with σ 6= id such that σ · b = b for all b ∈ B. Since σ 6= id, there exists a ∈ A such
that σ(a) 6= a. Note that for all k, there exists a k-tuple c in B such that every one
of its entries is a. Then σ · c 6= c. This is a contradiction, so Sn acts faithfully for all
k.
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11. We have 1→ id, r → (1 2 3 4), r2 → (1 3)(2 4), r3 → (1 4 3 2), s→ (1 4)(2 3),
sr → (1 3), sr2 → (1 2)(3 4), and sr3 = (2 4).

12. Let B = {(k, k + n
2 ) | 1 ≤ k ≤ n

2}. Define the action of t ∈ D2n on b ∈ B by
t · b = σt · b, where σt is the permutation corresponding to t, and σt · b is defined
as in exercise 8. Then we are required to show that the action of a subset of Sn

on B (which is a subset of the set C of ordered 2-tuples of {1, .., n}) is a group
action. From exercise 9, we have that for all σt, σu ∈ Sn and any c ∈ C, we have
σt · (σu · c) = (σtσu) · c. If it holds for all σt, σu ∈ Sn, then it necessarily holds for
all σt, σu in a subset of Sn and any c in a subset of C. In addition, since 1 ∈ D2n

corresponds to id ∈ Sn, and 1 · b = id · b = b for all b ∈ B, we have that the action
of D2n on B is a group action.

An element t ∈ D2n is in the kernel of the action iff t · b = b for all b ∈ B. In
other words, this requires that (σt(k), σt(k + n

2 )) = (k, k + n
2 ) for all 1 ≤ k ≤ n

2 or
σt(k) = k and σt(k + n

2 ) = k + n
2 . Since this is true for all 1 ≤ k ≤ n

2 , we must
have σt(`) = ` for all 1 ≤ ` ≤ n, from which it follows that t = id is the only such
element.

13. The kernel of the left regular action is the set of g ∈ G such that g · a = ga = a
for all a ∈ G. Assuming there exists g 6= 1 in G such that g · a = a for all a ∈ G,
we have that g · 1 = 1, but by the definition of the identity, g · 1 = g. We find that
g = 1, which is a contradiction. The kernel of the left regular action thus only
contains the identity 1.

14. For any g, h ∈ G and any a ∈ G, we have g · (h · a) = g · (ah) = ahg = (hg) · a.
G is not abelian, so gh 6= hg in general and therefore g · (h · a) 6= (gh) · a in general.
This action therefore cannot be a group action of G on itself.

15. For any g, h ∈ G and any a ∈ G, we have g · (h · a) = g · ah−1 = ah−1g−1 =

a(gh)−1 = (gh) · a. In addition, by definition, the identity 1 of G satisfies 1 · a = a
for all a ∈ G. Thus, this is a group action of G on itself.

16. For any g, h ∈ G and any a ∈ G, we have g · (h · a) = g · hah−1 = ghah−1g−1 =

gha(gh)−1 = (gh) · a. In addition, by definition of the identity 1 of G, we have
1 · a = 1a1 = 1a = a for all a ∈ G. Thus, this is a group action of G on itself.

17. Fix g ∈ G and define ϕg : G → G by ϕg(x) = gxg−1 for all x ∈ G. Note
that for any x, y ∈ G, we have ϕ(x)ϕ(y) = gxg−1gyg−1 = gxyg−1 = ϕ(xy), so
ϕ is a homomorphism. Now consider the map ϕ−1 : G → G given by ϕ−1(x) =

g−1xg for all x ∈ G. We have ϕ−1(ϕ(x)) = ϕ−1(gxg−1) = g−1gxg−1g = x and
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ϕ(ϕ−1(x)) = ϕ(g−1xg) = gg−1xgg−1 = x. Since ϕ has a two-sided inverse, it is a
bijection. Therefore, ϕ is an automorphism of G.

If x is of finite order |x| = n, then we have ϕ(x)n = ϕ(xn) = ϕ(1) = gg−1 = 1 so
|ϕ(x)| ≤ n. On the other hand, we have ϕ(1) = 1 = ϕ(x)|ϕ(x)| = ϕ(x|ϕ(x)|). Since
ϕ is a bijection, this implies that x|ϕ(x)| = 1, so |ϕ(x)| ≥ n. It must be that x and
ϕ(x) = gxg−1 have the same order. The fact that |A| = |gAg−1| follows from the
fact that ϕ is a bijection.

18. Because H is a group that acts on A, it contains an identity element 1 satisfy-
ing 1 · a = a for all a ∈ A. Therefore ∼ is reflexive. If a ∼ b, then there exists h ∈ H
such that a = h · b. Applying h−1, we have h−1 · a = h−1 · (h · b) = (h−1h) · b =

1 · b = b, so b ∼ a. Finally, if a ∼ b and b ∼ c, then there exist h1, h2 ∈ H such that
a = h1 · b and b = h2 · c. We may write a = h1 · b = h1 · (h2 · c) = (h1h2) · c, so a ∼ c
because h1h2 ∈ H. Therefore, ∼ is an equivalence relation.

19. Let ϕ : H → O be the map defined by ϕ(h) = hx for all h ∈ H. Con-
sider the map ϕ−1 : O → H defined by ϕ−1(s) = sx−1 for all s ∈ O. It is easy
to see by looking at the definition of O that the image of ϕ−1 is indeed a sub-
set of H. Then we have ϕ(ϕ−1(s)) = ϕ(sx−1) = sx−1x = s for all s ∈ O and
ϕ−1(ϕ(h)) = ϕ−1(hx) = hxx−1 = h for all h ∈ H. Since ϕ has a two-sided inverse,
it is a bijection. We conclude that because G is finite (and hence, so are H and O),
x was arbitrary, and ϕ is a bijection, it must be that every orbit has cardinality |H|.

If G is a finite group and H is a subgroup of G, the orbits under the action of
H on G partition G. It follows that |G| = ∑i∈I |Oi| where I is the index set used to
index the orbits in the partition. Since |Oi| = |H| for every orbit Oi, |G| = |I||H|.
In other words, |H| divides |G|.

20. Let G be the group of rigid motions of the tetrahedron. If we label the vertices
of the tetrahedron 1, 2, 3, 4, each rigid motion g ∈ G gives rise to a permutation σg

of {1, 2, 3, 4} by the way the motion g permutes the corresponding vertices. Then
the map from G× {1, 2, 3, 4} → {1, 2, 3, 4} defined by g · i = σg(i) defines a group
action of G on {1, 2, 3, 4}. Thus, there is a homomorphism ϕ from G to S4. It is
quite obvious that the only permutation of the vertices that fixes all of them is the
identity of G, so ϕ is injective. Since ϕ(G) is a subgroup of S4 (cf. Exercise 14 of
Section 6), and ϕ is injective, we have that G is isomorphic to a subgroup of S4.

21. Let G be the group of rigid motions of the cube. It is easy to see that every
element of G maps a pair of opposite vertices to another such pair. Label the
pairs of opposite vertices p1, p2, p3, p4. Each g ∈ G gives rise to a permutation σg of



{p1, p2, p3, p4} by the way g permutes the corresponding pairs of vertices. As in the
previous exercise, there is therefore a natural homomorphism ϕ : G → S4. Now,
suppose there is an element g ∈ G such that g is not the identity motion but g is in
the kernel of the action. Such an element must send at least one pair of opposite
vertices to each other. Let a, b be any pair of opposite vertices, and let c, d, e be
the neighbors of a, with b, e on the same face. Then sending a to b also sends c to
d’s partner and vice versa. The corresponding permutation of {p1, p2, p3, p4} is not
the identity, and it is clear that no such g can exist. Thus, ϕ is injective and since
|G| = |S4| = 24 (cf. Exercise 10 of Section 2), ϕ is a bijection. We conclude that
G ∼= S4.

22. Let G be the group of rigid motions of the octahedron. Through a similar
argument (just replace "vertices" with "faces") to the one in Exercise 21, we find
that there is a natural homomorphism ϕ : G → S4 and that ϕ is an injection. Since
|G| = |S4| = 24 (cf. Exercise 11 of Section 2), ϕ is a bijection and G ∼= S4.

23. The rotation of π radians about the axis through the center of a pair of oppo-
site faces maps every pair of opposite faces to themselves. Then the kernel is not
trivial and therefore, the action of the group on this set is not faithful. The kernel
of the action consists of just the three rotations of this type and the identity. All
other elements of G send at least one face of the cube to one of its neighbors, and
so, cannot be in the kernel.
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