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Introduction

This document is my learning diary written on behalf of Data Mining course
led at spring term 2015 at University of Helsinki.

1 Week 1

The support count σ(X) of an item set X is the amount of transactions
containing X (X ⊂ ti). Basically, we were computing support counts for various
itemsets with the exception of applying additional constraints to the queries
(such as particular grade range).

The support of an item set X is σ(X)/N , where N is the amount of all
transactions. Support of X may be thought of as a classical probability of a
random transaction containing X.

An association rule is an implication of the form X → Y , where X and Y
are itemsets having no items in common. The interpretation of an association
rule is that if a transaction containsX, it “tends” to contain Y as well. Note that
“tends” depends on parameters we specify to a data mining system. Support
of an association rule X → Y is

s(X → Y ) =
σ(X ∪ Y )

N
.

Support of the rule R may be thought of as a classical probability of R appearing
in a random transaction. Rule confidence gives the probability of Y appearing
in the same transactions with set X and is defined as

c(X → Y ) =
σ(X ∪ Y )

σ(X)
.

1.1 Reflection

Getting the data from a file to internal representation was pretty challenging:
the data seems a little bit “dirty” and I am sure there is room for improvement.
What comes to accessing data, I have made an effort to make sure that it runs
fast. Basically I have three model classes:

Course holds the course name, the course code, grading mode and the amount
of credits awarded,
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Student holds only a unique student ID and enrollment year,

CourseAttendanceEntry holds a course C, a student S, the year and month S
attended C, and the grade S received. Basically, these entries implement
a many-to-many relationship between courses and students.

2 Week 2

Task 5

The supports are as follow:

E 0.684
O 0.632
P 0.526
W 0.158
EO 0.474
EP 0.316
EW 0.053
OP 0.263
OW 0.053
PW 0.105
EOP 0.221
EOW 0.053
EPW 0
OPW 0

EOPW 0

The only observation that I was able to come up with is that if s(X) is support
of an itemset X, then

s(X) ≤ min
A(X

s(A).

Task 10

We have around 23 million (N) different paperback books and we want to
generate all 10-combinations of those. Suppose we are given an index tuple
t = (t1, t2, . . . , t10) = (1, 2, . . . , 10). Next generate a combination of books
indexed by t and increment t10. When t10 = N + 1, increment t9 and set
t10 = t9 + 1. After t9 = N − 1 (and thus t10 = N) has been generated,
increase t8 and set t9 = t8 + 1, t10 = t8 + 2. Continue this routine until
t1 = N − 9, t2 = N − 8, . . . , t9 = N − 1, t10 = N .

Task 15

In this task we are supposed to measure time of generating k-combinations of
courses for k ∈ {2, 3, 5}. The results are summarized in the following table:
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k t
2 4 ms
3 40 ms
5 291 ms

Increasing k from 2 to 3 increases the running time by a factor of 10; increasing
k from 3 to 5 increases the running time by a factor of 7,3. Since n = 213,(

n

3

)(
n

2

)−1

=
n!2!(n− 2)!

n!3!(n− 3)!)

=
(n− 2)!

3(n− 3)!

=
n− 2

3
≈ 70,

and (
n

5

)(
n

3

)−1

=
n!3!(n− 3)!

n!5!(n− 5)!)

=
(n− 3)!

20(n− 5)!

=
(n− 4)(n− 3)

20
≈ 2100,

which does not quite go hand in hand with the measurements.

Task 19

The objective of this task is to compare brute-force and Apriori algorithms for
frequent itemset generation.

k support Brute-force (ms) Apriori (ms)
2 0.3 379 154
3 0.175 9389 774
4 0.1 N/A 1845
5 0.1 N/A 1637

After Arto’s counsel, I was able to speedup generation of 3-combinations by
a factor of 20, but I was not able to make 4-combination generation feasible.

Task 21

The largest size of itemsets with support at least 0.05 seems to be 11. I got 19
of such itemsets; one of them is

• TVT-ajokortti

• Ohjelmoinnin perusteet
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• Opiskelutekniikka

• Tietokantojen perusteet

• Ohjelmoinnin jatkokurssi

• Tietoliikenteen perusteet

• Tietorakenteet ja algoritmit

• Johdatus tietojenkäsittelytieteeseen

• Tietokone työvälineenä

• Ohjelmistotekniikan menetelmät

• Aineopintojen harjoitustyö: Tietokantasovellus

3 Week 3

Task 10

Given a set of events E = {e1, e2, . . . , ed}, a sequence s over E is 〈S1, S2, . . . , Sn〉,
where ∅ 6= Si ⊆ I for all i. The sequence t = 〈t1, . . . , tk〉 is said to be a
subsequence of s if there exist integers 1 ≤ j1 < j2 < · · · < jk ≤ n such that
ti ⊆ Sji for all i = 1, 2, . . . , k.

Task 11

We are given events A,B and C. All possible 1-sequences are:

1. 〈{A}〉

2. 〈{B}〉

3. 〈{C}〉

All possible 2-sequences are:

1. 〈{A,B}〉

2. 〈{A,C}〉

3. 〈{B,C}〉

4. 〈{A} {A}〉

5. 〈{A} {B}〉

6. 〈{A} {C}〉

7. 〈{B} {A}〉

8. 〈{B} {B}〉

9. 〈{B} {C}〉
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10. 〈{C} {A}〉

11. 〈{C} {B}〉

12. 〈{C} {C}〉

Above we have d = 3, which produces 12 2-sequences. For general d > 1, there
would be

(
d
2

)
+ d2 2-sequences.

Task 13

We are given the following sequences:

• 〈{B} {C} {H}〉

• 〈{B,P} {C}〉

• 〈{C} {H} {P}〉

• 〈{P} {C,H}〉

• 〈{T} {B} {C}〉

• 〈{T} {B,P}〉

• 〈{T} {P} {C}〉

where B is for bathroom, C is for computer, H is for homework, P is for phone
and T is for TV.

Now the possible 4-candidates are:

• 〈{B} {C} {H} {P}〉

• 〈{T} {B} {C} {H}〉

• 〈{B,P} {C,H}〉

• 〈{T} {B,P} {C}〉

• 〈{T} {P} {C,H}〉

• 〈{P} {C,H} {P}〉

Task 15

The supports for maxspan of 1 is as follows:

Sequence Support
〈{courses} {courses}〉 0.2
〈{courses} {dm}〉 0.6
〈{dm} {courses}〉 0.2
〈{index} {courses}〉 0.0
〈{teaching} {dm}〉 0.0

The maxspan is a pruning parameter: let t1 be the moment at which the very
first event begins and t2 the moment at which the very last event ends, then
the sequence is pruned if t2 − t1 > maxspan.
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Task 16

The top five 2-sequences are:

Sequence Support
Lineaarialgebra ja matriisilaskenta I, Lineaarialgebra ja matriisilaskenta II 0.326
Lineaarialgebra ja matriisilaskenta I, Analyysi I 0.317
Turvallinen työskentely laboratoriassa, Yleinen kemia I 0.259
Analyysi I, Analyysi II 0.257
Yleinen kemia I, Yleinen kemia II 0.236

Task 18

The top 5 8-sequences are:

1. Turvallinen työskentely laboratoriossa

2. Yleinen kemia I

3. Kemian orientoivat opinnot

4. Yleinen kemia II

5. Orgaanisen kemian perustyöt I

6. Liouskemian perusteet

7. Atomien ja molekyylien rakenne

8. Kemian tietolähteet

with support 0.0211,

1. Turvallinen työskentely laboratoriossa

2. Yleinen kemia I

3. Kemian orientoivat opinnot

4. Yleinen kemia II

5. Orgaanisen kemian perustyöt I

6. Matematiikkaa kemisteille

7. Atomien ja molekyylien rakenne

8. Kemian tietolähteet

with support 0.0204,

1. Turvallinen työskentely laboratoriossa

2. Yleinen kemia I

3. Kemian orientoivat opinnot
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4. Yleinen kemia II

5. Orgaanisen kemian perustyöt I

6. Liouskemian perusteet

7. Orgaanisten yhdisteiden rakenteiden selvittäminen

8. Integroidut TVT-opinnot

with support 0.0204,

1. Turvallinen työskentely laboratoriossa

2. Yleinen kemia I

3. Kemian orientoivat opinnot

4. Yleinen kemia II

5. Orgaanisen kemian perustyöt I

6. Liouskemian perusteet

7. Orgaanisten yhdisteiden rakenteiden selvittäminen

8. Kemian tietolähteet

with support 0.0204,

1. Turvallinen työskentely laboratoriossa

2. Yleinen kemia I

3. Kemian orientoivat opinnot

4. Yleinen kemia II

5. Orgaanisen kemian perustyöt I

6. Liouskemian perusteet

7. Matematiikkaa kemisteille

8. Atomien ja molekyylien rakenne

with support 0.0204.
It is obvious that the above five sequences are very alike. Actually the four

last sequences have exactly the same support.

Task 19

What comes to the results in Task 18, doing the same with maxspan produces
a result with “less variation”. This can be explained by assuming that those
students that “fit in“ maxspan of 36 months, tend to perform the same course
permutation. On behalf of Task 17, applying the maxspan of 36 months pro-
duces the same sequences (with slightly smaller supports each). This can be
explained by assuming that 36 months is enough for any student in the data to
score 5 courses.
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4 Week 4

Task 2

A frequent itemset is maximal if adding any item to it makes it infrequent. By
Apriori principle, any subset of a frequent maximal itemset is also frequent. (It
is hard to avoid rephrasing the definition in the course book.)

Task 5

A closed itemset X is an itemset for which all of its supersets have support less
than the support of X.

Task 7

A closed frequent itemset X is a closed itemset whose support is at least minsup
(in which case, X is called “frequent”).

Task 10

Any itemset having support no less than minsup is considered to be “interesting”
due to the fact that it occures in the database “frequently”. Once a maximal
frequent itemset X is found, we know that all its subsets A ⊆ X are frequent
too, and all supersets of X will be non-frequent. The purpose of a closedness of
an itemset is as follow: if X is closed and non-frequent, there is no way any its
superset A can be frequent.

Task 11

The set EOW is frequent because its support is 0.053 (see Week 2, Task 5). It
is also closed because all of its supersets (only EOPW in this case; has support
0) has same support as EOW.

Also, E, O, P, W, EO, EP, OP, PW, EOP are closed frequent itemsets. EW,
OW, EPW, OPW are not closed. EOPW is not frequent.

Task 14

We used the support of 0.15 in order to “get” to rules in which the Introduction
to programming course (fin. Ohjelmoinnin perusteet) is in consequent. The
following table lists five rules with maximum confidence (which is 1 one for all
five rules).

Rule Support Confidence
{ JTKT } → { OHPE, OHJA, TITY } 0.162 1.0
{ OHJA } →{ OHPE, TITY, OHME } 0.162 1.0
{ JTKT } →{ OHPE, TITY, OHME } 0.162 1.0
{ OHJA } →{ JTKT, OHPE, TITY } 0.162 1.0
{ OHME } →{ JTKT, OHPE, TITY } 0.162 1.0

Above, we used the following abbreviations:
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JTKT Johdatus tietojenkäsittelytieteeseen

OHPE Ohjelmoinnin peruskurssi

OHJA Ohjelmoinnin jatkokurssi

OHME Ohjelmistotekniikan menetelmät

TITY Tietokone työvälineenä

Above, one can see that the five courses are related to each other, since the set
of all five courses are “popular” among computer science students.
The following table lists five rules with “Introduction to programming” in the
antecedent and with low confidence:

Rule Support Confidence
{ TITY, OHME } → { OHPE, OHJA } 0.161 0.344
{ TITY, JTKT } →{ OHPE, OHJA } 0.161 0.344
{ TIKAPE, OHME } →{ OHPE, OHJA } 0.161 0.344
{ TIKAPE } →{ OHPE, OHJA } 0.161 0.344
{ TITY } →{ OHPE, OHJA } 0.161 0.344

Above, TIKAPE stands for “Tietokantojen perusteet” (engl. Introduction
to Databases). Since OHPE is in consequent, I think that the above rules apply
to students whose major is not computer science. Also, there seems no strong
relation between those courses.

Task 15

The lift of an association rule X → Y is defined as

Lift =
c(X → Y )

s(Y )
=
σ(X ∪ Y )/σ(X)

σ(Y )/N
=
Nσ(X ∪ Y )

σ(X)σ(Y )
,

or namely as a ratio of the rule’s confidence and the support of its consequent.
Since s(Y ) ≤ 1, Lift ≥ c(X → Y ). I am not quite positive, but it appears to
me that lift communicates “coolness” of an association rule. Now, what comes
to lifts for the rules in Task 14, the low confidence rules have lift of around 1.2
and the lift values for high-confidence rules are almost up to 6.0.

Task 16

The IS measure is defined as

IS(A,B) =
√
c(A→ B) · c(B → A)

=

√
σ(A ∪B)σ(B ∪A)

σ(A)σ(B)

=
σ(A ∪B)√
σ(A)σ(B)

.

The IS measures for rules from the Task 14 do not seem to variate too much
(approximately within the range [0.7, 0.95]),
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5 Week 5

Task 6

It seems reasonable to code the grades by means of seven items: PASS, FAIL,
1, 2, 3, 4, 5.

Task 7

The amount of credits for a course and students’ enrollment years.

Task 11

FAIL 1-3 4-5
Introduction to programming 81 168 393
Advanced programming 73 154 295
Both 154 322 688

Task 13

I am pretty confident that grade is a categorical attribute.

Task 16

The mean grade in question is ≈ 2.6.

Task 17

The mean grade in question is ≈ 2.8.

Task 18

The mean grade in question is ≈ 3.4.

6 Week 6

Tasks 1 - 4

Obviously, algorithm find(itemset) generates all itemsets with support no less
than 0.5. It implements general-to-specific traversal using depth-first search
strategy. If the lattice contains large frequent itemsets, the algorithm will do a
lot of unnecessary work while getting to them (multiple times since there might
be many paths to a large itemset). However, it might find frequent patterns
faster than the BFS-strategy, since it is not confined to proceeding in breadth-
first fashion. In order to improve the efficiency of the above algorithm, I would
suggest using a “closed list”, storing all itemsets already considered, and thus
pruning away some recomputation. Also, in order to print maximal frequent
itemsets, just run the above algorithm, choose the itemsets with maximal size
and print them.
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Tasks 5 - 6

In order to find support count of C (we can convert to support simply by
dividing support count by the amount of transactions in the database), we just
go from the root of the tree to the left child C and use its mapped value, i.e.,
3. In order to find out the support count of CD, we have to traverse the tree
starting from root: it would yield the support count of 3 as well. Finally, itemset
D has support count of 1.

In order to find out the support count T , we iterate over all nodes pointed
by the T -pointer. Since there is only one such pointer, we consider the support
count whatever is associated with the only node pointed to, i.e., the support
count is 1. Same rationale is for W . D is kinky as it is mapped to two nodes.
Since D is a singleton, the support count of one is assumed, since only that tree
node represents the set {D}.

What comes to DW , we also have two tree nodes, but only one of them has
a child W , so the support count is 1. Finally, the support count for CD is 3,
sinceC is mapped to the node C : 3, which has a child D : 3.

Task 7

The main difference between the previous algorithm and FP-growth algorithm,
is that in the former, the map maps each item to a list of nodes with the same
item, while, in the latter, the map maps each item to the “first” occurrence of the
node with given item, than the latter has a pointer to the “second” occurrence
of the node, and so on.

Tasks 8 - 11

ACCENT stands for apprehension, clarity, consistency, efficiency, necessity,
truthfulness. The point is to convey information in efficient manner. The per-
son looking at a visualization should have no problem seeing the patterns and
properties of the data being visualized.

What comes to visualizing students’ grades, I will choose a course and plot
the grade distribution. One way to achieve this is to use the bar plot, having
six grades (from 0 to 5), and plotting the against each grade the amount of
students that have scored that grade. Another visualization might be also a bar
plot, except that students are laid out through the horizontal axis and grades
being arranged through the vertical axis. The following table summarized the
pros and cons of each visualization technique:

Pros Cons
Grade to

frequency plot
May be typeset

compactly
Does not necessarily convey

information about distribution
Student to
grade plot

The grade distribution
is obvious

Large space requirements

I have chosen “Grade to frequency” plot and it looks like this:
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Tasks 12 - 13

I am pretty confident that http://infosthetics.com/archives/2014/08/amsterdam_
city_dashboard_a_city_as_urban_statistics.html can be used to visualize
the course data such as average degree, pass ratio, etc.

I was not able to identify myself within the data set, yet I found a couple of
students whose curriculum resembles mine.
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