Analysis of Algorithms Problem Set 1

Hongggen Zhang

September 1 2019

1 Dynamic Array

Using the potential method, prove that insertion into the dynamic array has a mortized cost of ${\cal O}(1)$

Define a potential function

$$\Phi_i = 2i - m \tag{1}$$

where i is the *ith* operation of insert, and m is the size of the dynamic array in the *ith* operation. Assume we start with size 1.

Φ_1	$2 \times 1 - 1 = 1$
Φ_2	$2 \times 2 - 2 = 2$
Φ_3	$2 \times 3 - 4 = 2$
Φ_4	$2 \times 4 - 4 = 4$
Φ_5	$2 \times 5 - 8 = 2$
Φ_6	$2 \times 6 - 8 = 4$

Therefore, we have two condition, when $i = 2^k + 1, m = 2k$, $else, m \le 2i, k = z^*$. when $i = 2^k + 1, m = 2k, \Phi_i = 2 \cdot 2^k + 1 - 2k > 0$

Known the Amortized Cost equation of potential method

$$\hat{c}_i = c_i + \Phi_i - \Phi_{i-1} \tag{2}$$

where c_i is the count of the *ith* insert

c_1	0 + 1
c_2	1 + 1
c_3	2 + 1
c_4	0 + 1
c_5	4 + 1
c_6	0 + 1

From the table 2, the c_i has 2 forms, the normal cost is $c_i = 1$, the expensive cost is $c_i = i - 1 + 1, i = 2^k + 1$. In the normal case:

$$\hat{c}_i = c_i + \Phi_i - \Phi_{i-1} \tag{3}$$

$$\hat{c}_i = 1 + (2i - m) - (2(i - 1) - m) \tag{4}$$

$$\hat{c}_i = 3 \tag{5}$$